Volume 29, Issue 3 (5-2025)                   IBJ 2025, 29(3): 114-125 | Back to browse issues page

Ethics code: IR.PII.REC.1400.079/IR.PII.REC.1399.082


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi S, Rashidi M, Khedri A, Kouchak M, Salehi M, Zamani S et al . Atorvastatin-Loaded Carboxymethyl Cellulose-Gelatin Hydrogel: A Synergistic Strategy for Enhanced Wound Healing and Skin Tissue Regeneration. IBJ 2025; 29 (3) :114-125
URL: http://ibj.pasteur.ac.ir/article-1-5043-en.html
Abstract:  
Background: Skin tissue engineering is an innovative alternative to traditional methods for addressing skin injuries. This study aimed to synthesize a hydrogel consisting of carboxymethyl cellulose (CMC) and gelatin (Gel) containing atorvastatin (ATR) with the potential to accelerate tissue regeneration and wound healing in an animal model.
Methods: Five unique formulations of hydrogel with different concentrations of ATR (0.1%, 0.5%, 1%, and 2% w/v) were synthesized using CMC-Gel. The structural characteristics of the hydrogels were assessed using SEM and FTIR spectroscopy. Additional evaluations carried out included swelling behavior, degradability, ATR release, compatibility, hemolytic activity, and the viability of NIH/3T3 fibroblast cells. The therapeutic effectiveness of these hydrogels in enhancing wound healing was investigated in an animal model by making a full-thickness skin incision in Wistar rats.
Results: The synthesized CMC-Gel scaffolds had a porous structure with interconnected pores measuring 103 ± 8.74 μm and the ability to enhance cell migration. The MTT analysis showed a concentration-dependent relationship between ATR and cell proliferation, among which, the desirable concentration was 0.1% w/v. Furthermore, increased ATR concentrations were associated with decreased dressing capacity for hemostasis and coagulation. In vivo studies revealed that all the hydrogel-treated groups significantly outperformed the control group in promoting wound closure rates. Remarkably, the CMC-Gel-ATR 0.1% group exhibited the highest rates of wound closure, re-epithelialization, and angiogenesis.
Conclusion: Our results suggest the CMC-Gel-ATR as a desirable wound dressing for clinical application due to its unique physicochemical properties and comprehensive biocompatibility in in vitro and in vivo investigations. 

References
1. Griffiths CE, Barker J, Bleiker TO,Hussain W, Simpson RC, editors. Rook's textbook of dermatology, 4 Volume Set, 10th Edition. Wiley-Blackwell; 2024.
2. Farahani M, Shafiee A. Wound healing: From passive to smart dressings. Adv Healthc Mater. 2021;10(16):2100477. [DOI:10.1002/adhm.202100477]
3. Levine JM, Delmore B, Cox J. Skin failure: Concept review and proposed model. Adv Skin Wound Care. 2022;35(3):139-48. [DOI:10.1097/01.ASW.0000818572.31307.7b]
4. 4. Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, et al. Recent developments of carboxymethyl cellulose. Polymers. 2021;13(8):1345. [DOI:10.3390/polym13081345]
5. Kang JI, Park KM. Advances in gelatin-based hydrogels for wound management. J Mater Chem B. 2021;9(6):1503-20. [DOI:10.1039/D0TB02582H]
6. Feingold KR. Cholesterol lowering drugs. In: Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Muzumdar R, Purnell J, Rey R, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. 2024. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. PMID: 27809434
7. Zahedipour F, Hosseini SA, Reiner Z, Tedeschi-Reiner E, Jamialahmadi T, Sahebkar A. Therapeutic effects of statins: Promising drug for topical and transdermal administration. Curr Med Chem. 2024;31(21):3149-66. [DOI:10.2174/0929867330666230508141434]
8. Saghafi F, Ramezani V, Jafari-Nedooshan J, Zarekamali J, Kargar S, Tabatabaei SM, et al. Efficacy of topical atorvastatin-loaded emulgel and nano-emulgel 1% on post-laparotomy pain and wound healing: A randomized double-blind placebo-controlled clinical trial. Int Wound J. 2023;20(10):4006-14. [DOI:10.1111/iwj.14289]
9. Zamani S, Salehi M, Abbaszadeh-Goudarzi G, Cheraghali D, Ehterami A, Esmaili S, et al. Evaluation effect of alginate hydrogel containing losartan on wound healing and gene expression. J Biomater Appl. 2025;39(7):762-88. [DOI:10.1177/08853282241292144]
10. Hoque J, Prakash RG, Paramanandham K, Shome BR, Haldar J. Biocompatible injectable hydrogel with potent wound healing and antibacterial properties. Mol Pharm. 2017;14(4):1218-30. [DOI:10.1021/acs.molpharmaceut.6b01104]
11. Karvinen J, Kellomäki M. Characterization of self-healing hydrogels for biomedical applications. Eur Polym J. 2022;181:111641. [DOI:10.1016/j.eurpolymj.2022.111641]
12. Xu Y, Chen H, Fang Y, Wu J. Hydrogel combined with phototherapy in wound healing. Adv Healthc Mater. 2022;11(16):2200494. [DOI:10.1002/adhm.202200494]
13. Sideek SA, El-Nassan HB, Fares AR, Elkasabgy NA, ElMeshad AN. Cross-linked alginate dialdehyde/chitosan hydrogel encompassing curcumin-loaded bilosomes for enhanced wound healing activity. Pharmaceutics. 2024;16(1):90. [DOI:10.3390/pharmaceutics16010090]
14. Zhou C, Yi Z. Blood-compatibility of polyurethane/liquid crystal composite membranes. Biomaterials. 1999;20(22):2093-9. [DOI:10.1016/S0142-9612(99)00080-0]
15. Dawit H, Zhao Y, Wang J, Pei R. Advances in conductive hydrogels for neural recording and stimulation. Biomater Sci. 2024;12(11):2786-800. [DOI:10.1039/D4BM00048J]
16. Buranaamnuay K. The MTT assay application to measure the viability of spermatozoa: A variety of the assay protocols. Open Vet J. 2021;11(2):251-69. [DOI:10.5455/OVJ.2021.v11.i2.9]
17. Hamache T, Belboukhari N, Sekkoum K. Stereochemical of atorvastatin drug by using spectroscopic. Analysis. Clinical Trials and Case Studies. 2024;3(1):1-4.
18. Tavakoli J, Tang Y. Hydrogel based sensors for biomedical applications: An updated review. Polymers. 2017;9(8):364. [DOI:10.3390/polym9080364]
19. Salehi M, Ehterami A, Farzamfar S, Vaez A, Ebrahimi-Barough S. Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model. Drug Deliv Transl Res. 2021;11:142-53. [DOI:10.1007/s13346-020-00731-6]
20. Arabpour Z, Abedi F, Salehi M, Baharnoori SM, Soleimani M, Djalilian AR. Hydrogel-based skin regeneration. Int J Mol Sci. 2024;25(4):1982. [DOI:10.3390/ijms25041982]
21. Zhang Z, Feng Y, Wang L, Liu D, Qin C, Shi Y. A review of preparation methods of porous skin tissue engineering scaffolds. Mater Today commun. 2022;32:104109. [DOI:10.1016/j.mtcomm.2022.104109]
22. Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021;15(8):12687-722. [DOI:10.1021/acsnano.1c04206]
23. Soleimani Z, Baharifar H, Najmoddin N, Khoshnevisan K. Evaluation of carboxymethyl cellulose/gelatin hydrogel-based dressing containing cefdinir for wound healing promotion in animal model. Gels. 2025;11(1):38. [DOI:10.3390/gels11010038]
24. Abootorabi S, Akbari J, Saeedi M, Seyedabadi M, Ranaee M, Asare-Addo K, et al. Atorvastatin entrapped noisome (Atrosome): Green preparation approach for wound healing. AAPS Pharm Sci Tech. 2022;23(3): Article number 1. [DOI:10.1208/s12249-022-02231-x]
25. Marcheggiani F, Cirilli I, Orlando P, Silvestri S, Vogelsang A, Knott A, et al. Modulation of Coenzyme Q10 content and oxidative status in human dermal fibroblasts using HMG-CoA reductase inhibitor over a broad range of concentrations. From mitohormesis to mitochondrial dysfunction and accelerated aging. Aging. 2019;11(9):2565-82. [DOI:10.18632/aging.101926]
26. Heit YI, Dastouri P, Helm DL, Pietramaggiori G, Younan G, Erba P, et al. Foam pore size is a critical interface parameter of suction-based wound healing devices. Plast Reconstr Surg. 2012;129(3):589-97. [DOI:10.1097/PRS.0b013e3182402c89]
27. Montazerian H, Davoodi E, Baidya A, Baghdasarian S, Sarikhani E, Meyer CE, et al. Engineered hemostatic biomaterials for sealing wounds. Chem Rev. 2022;122(15):12864-903. [DOI:10.1021/acs.chemrev.1c01015]
28. Akin F, Ayca B, Kose N, Sahin I, Akin MN, Canbek TD, et bal. Effect of atorvastatin on hematologic parameters in patients with hypercholesterolemia. Angiology. 2013;64(8):621-5. [DOI:10.1177/0003319713479154]
29. Proksch E. pH in nature, humans and skin. J Dermatol. 2018;45(9):1044-52. [DOI:10.1111/1346-8138.14489]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb