Volume 26, Issue 3 (5-2022)                   IBJ 2022, 26(3): 193-201 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghayan S, Seyedjafari E, Hamidi S. Effects of Nanofiber Scaffolds Coated with Nanoparticulate and Microparticulate Freeze Dried Bone Allograft on the Morphology, Adhesion, and Proliferation of Human Mesenchymal Stem Cells. IBJ 2022; 26 (3) :193-201
URL: http://ibj.pasteur.ac.ir/article-1-3550-en.html
Abstract:  
Background: Freeze dried bone allograft nanoparticles on a nanofiber membrane may serve as an ideal scaffold for bone regeneration. This study aimed to assess the biological behavior of human mesenchymal stem cells (MSCs) in terms of proliferation and adhesion to nanoparticulate and microparticulate freeze dried bone allograft (FDBA) scaffolds on poly-L-lactic acid (PLLA) nanofiber membrane.
Methods: In this experimental study, PLLA nanofiber scaffolds were synthesized by the electrospinning method. The FDBA nanoparticles were synthesized mechanically. The FDBA nanoparticles and microparticles were loaded on the surface of PLLA nanofiber membrane. A total of 64 scaffold samples in four groups of n-FDBA/PLLA, FDBA/PLLA, PLLA and control were placed in 24-well polystyrene tissue culture plates; 16 wells were allocated to each group. Data were analyzed using one-way ANOVA and Bonferroni test.
Results: The proliferation rate of MSCs was significantly higher in the nanoparticulate group compared to the microparticulate group at five days (p = 0.034). Assessment of cell morphology at 24 hours revealed spindle-shaped cells with a higher number of appendages in the nanoparticulate group compared to other groups.
Conclusion: MSCs on n-FDBA/PLLA scaffold were morphologically more active and flatter with a higher number of cellular appendages, as compared to FDBA/PLLA. It seems that the nanoparticulate scaffold is superior to the microparticulate scaffold in terms of proliferation, attachment, and morphology of MSCs in vitro.

 

References
1. Rosen PS, Reynolds MA, Bowers GM. The treatment of intrabony defects with bone grafts. Periodontol 2000 2000; 22: 88-103. [DOI:10.1034/j.1600-0757.2000.2220107.x]
2. Sadeghi R, Najafi M, Semyari H, Mashhadiabbas F. Histologic and histomorphometric evaluation of bone regeneration using nanocrystalline hydroxyapatite and human freeze-dried bone graft: An experimental study in rabbit. Journal of orofacial orthopedics 2017; 78(2): 144-152 [DOI:10.1007/s00056-016-0067-8]
3. Li M, Mondrinos MJ, Chen X, Gandhi MR, Ko FK, Lelkes PI. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. Journal of biomedical materials research. Part A 2006; 79(4): 963-973. [DOI:10.1002/jbm.a.30833]
4. Sun T, Mai S, Norton D, Haycock JW, Ryan AJ, MacNeil S. Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue engineering 2005; 11(7-8): 1023-1033. [DOI:10.1089/ten.2005.11.1023]
5. Zhong S P, Teo W E, Zhu X, Beuerman R, Ramakrishna S, Yung LYL. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning. Materials science and engineering c 2007; 27(2): 262-266. [DOI:10.1016/j.msec.2006.05.010]
6. He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 2005; 26(36): 7606-7615. [DOI:10.1016/j.biomaterials.2005.05.049]
7. Venugopal JR, Zhang Y, Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artificial organs 2006; 30(6): 440-446. [DOI:10.1111/j.1525-1594.2006.00239.x]
8. Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids and surfaces B: biointerfaces 2004; 39(3): 125-131. [DOI:10.1016/j.colsurfb.2003.12.004]
9. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in biotechnology 1998; 16(5): 224-230. [DOI:10.1016/S0167-7799(98)01191-3]
10. Schofer MD, Boudriot U, Leifeld I, Sütterlin RI, Rudisile M, Wendorff JH, Greiner A, Paletta JRJ, Fuchs-Winkelmann S. Characterization of a PLLA-collagen I blend nanofiber scaffold with respect to growth and osteogenic differentiation of human mesenchymal stem cells. Scientific world journal 2009; 9: 118-129. [DOI:10.1100/tsw.2009.13]
11. Lou T, Wang X, Song G. Fabrication of nano-fibrous poly (l-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. International journal of biological macromolecules 2013; 61: 353-358. [DOI:10.1016/j.ijbiomac.2013.07.025]
12. Birhanu G, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Dusti Telgerd M. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Artificial cells, nanomedicine, and biotechnology 2018; 46(6): 1274-1281. [DOI:10.1080/21691401.2017.1367928]
13. Jackson L, Jones DR, Scotting P, Sottile V. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. Journal of postgraduate medicine 2007; 53(2): 121-127. [DOI:10.4103/0022-3859.32215]
14. Pikuła M, Marek-Trzonkowska N, Wardowska A, Renkielska A, Trzonkowski P. Adipose tissue-derived stem cells in clinical applications. Expert opinion on biological therapy 2013; 13(10): 1357-1370. [DOI:10.1517/14712598.2013.823153]
15. Villanueva S, Carreño JE, Salazar L, Vergara C, Strodthoff R, Fajre F, Céspedes C, Sáez PJ, Irarrázabal C, Bartolucci J, Figueroa F, Vio CP. Human mesenchymal stem cells derived from adipose tissue reduce functional and tissue damage in a rat model of chronic renal failure. Clinical science 2013; 125(4): 199-210. [DOI:10.1042/CS20120644]
16. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in biotechnology 2006; 24(4): 150-154. [DOI:10.1016/j.tibtech.2006.01.010]
17. Tham WL, Chow WS, Mohd Ishak ZA. Flexural and morphological properties of poly (methyl methacrylate)/ hydroxyapatite composites: effects of planetary ball mill grinding time. Journal of reinforced plastics and composites 2010; 29(13): 2065-2075. [DOI:10.1177/0731684409344899]
18. Jacquelyn C, Michelle S, Joshua T. Unintended consequences of the potential phase-out of gamma irradiation. F1000research 2018; 7: 348. [DOI:10.12688/f1000research.14090.1]
19. Arjmand B, Aghayan HR, Larijani B, Sahebjam M, Ghaderi F, Goodarzi P. The effect of gamma irradiation on the osteoinductivity of demineralized human bone allograft. Acta medica iranica 2014; 52(3): 215-219.
20. Heri S, Deny M, Camilla A. The Influence of the Preservation Method and Gamma Irradiation Sterilization on TGF-β and bFGF Levels in Freeze-Dried Amnion Membrane (FD-AM) and Amnion Sponge. International journal of biomaterials 2021; 2021: 6685225 [DOI:10.1155/2021/6685225]
21. Faeze P, Armaghan Gh, Saeid V, Abdolreza A. Improved proliferation and osteogenic differentiation of mesenchymal stem cells on polyaniline composited by polyethersulfone nanofibers. Biologicals 2017; 45(1): 78-84. [DOI:10.1016/j.biologicals.2016.09.010]
22. Jaclyn L, Thanh Yen N, Huinan L. Nanophase hydroxyapatite and poly(lactide-co-glycolide) composites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro. Journal of materials science. Materials in medicine 2012; 23(10): 2543-2552. [DOI:10.1007/s10856-012-4709-0]
23. Seyedjafari E, Soleimani M, Ghaemi N, Shabani I. Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules 2010; 11(11): 3118-3125. [DOI:10.1021/bm1009238]
24. Ma J, Van den Beucken J, Both S, Prins H, Helder M, Yang F. Osteogenic capacity of human BM-MSCs, AT-MSCs and their co-cultures using HUVECs in FBS and PL supplemented media. Journal of tissue engineering and regenerative medicine 2015; 9(7): 779-788. [DOI:10.1002/term.1704]
25. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells 2006; 24(5): 1294-1301 [DOI:10.1634/stemcells.2005-0342]
26. Ma J, Yang F, Both S, Kersten-Niessen M, Bongio M, Pan J. Comparison of cell-loading methods in hydrogel systems. Journal of biomedical materials research 2014; 102(4): 935-946. [DOI:10.1002/jbm.a.34784]
27. Hayrapetyan A, Bongio M, Leeuwenburgh S, Jansen J, Van Den Beucken J. Effect of nano-HA/collagen composite hydrogels on osteogenic behavior of mesenchymal stromal cells. Stem cell reviews and reports 2016: 12(3), 352-364. [DOI:10.1007/s12015-016-9644-x]
28. Shabani I, Haddadi-Asl V, Seyedjafari E, Soleimani M. Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Biochemical and biophysical research communications 2012; 423(1): 50-54. [DOI:10.1016/j.bbrc.2012.05.069]
29. Ramezanifard R, Seyedjafari E, Ardeshirylajimi A, Soleimani M. Biomimetic scaffolds containing nanofibers coated with willemite nanoparticles for improvement of stem cell osteogenesis. Materials science and engineering. C, Materials for biological applications 2016; 62: 398-406. [DOI:10.1016/j.msec.2016.01.089]
30. Judd C, McClelland G, Ryan C. Data analysis: A model comparison approach to regression, ANOVA, and beyond. 3rd Edition. New York: Routledge;2017. [DOI:10.4324/9781315744131]
31. Gandhimathi C, Venugopal JR, Tham AY, Ramakrishna S, Kumar SD. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Materials science and engineering. C, materials for biological applications 2015; 49: 776-785. [DOI:10.1016/j.msec.2015.01.075]
32. Ferreira L, Karp JM, Nobre L, Langer R. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 2008; 3(2):136-146. [DOI:10.1016/j.stem.2008.07.020]
33. Shakir M, Zia I, Rehman A, Ullah R. Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: Bio-inspired nanocomposites for bone tissue engineering. International journal of biological macromolecules 2018; 111: 903-916 [DOI:10.1016/j.ijbiomac.2018.01.035]
34. Kawahara H, Soeda Y, Niwa K, Takahashi M, Kawahara D, Araki N. In vitro study on bone formation and surface topography from the standpoint of biomechanics. Journal of materials science. Materials in medicine 2004; 15(12): 1297-1307. [DOI:10.1007/s10856-004-5738-0]
35. Ragelle H, Naba A, Larson BL, Zhou F, Prijić M, Whittaker CA, Del Rosario A, Langer R, Hynes RO, Anderson DG. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 2017; 128: 147-159. [DOI:10.1016/j.biomaterials.2017.03.008]
36. Gandhimathi C, Venugopal JR, Ravichandran R, Sundarrajan S, Suganya S.Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Macromolecular bioscience 2013; 13(6): 696-607. [DOI:10.1002/mabi.201200435]
37. Balaji Raghavendran HR, Puvaneswary S, Talebian S, Murali MR, Naveen SV, Krishnamurithy G, McKean R, Kamarul T. A comparative study on in vitro osteogenic priming potential of electron spun scaffold PLLA/HA/Col, PLLA/HA, and PLLA/Col for tissue engineering application. PLoS one 2014; 9(8): e104389. [DOI:10.1371/journal.pone.0104389]
38. Rajzer I, Menaszek E, Kwiatkowski R, Planell JA, Castano O. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Materials science and engineering. C, materials for biological applications 2014; 44: 183-190. [DOI:10.1016/j.msec.2014.08.017]
39. Ganesh N, Jayakumar R, Koyakutty M, Mony U, Nair SV. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering. Tissue engineering. Part A 2012; 18(17-18): 1867-1881. [DOI:10.1089/ten.tea.2012.0167]
40. Seil JT, Webster TJ. Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites. International journal of nanomedicine 2008; 3(4): 523. [DOI:10.2147/IJN.S4346]
41. Griffin MF, Kalaskar DM, Seifalian A, Butler PE. Suppl-3, M4: An update on the Application of Nanotechnology in Bone Tissue Engineering. The open orthopaedics journal 2016; 10: 836. [DOI:10.2174/1874325001610010836]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb