Volume 29, Issue 4 (4-2025)                   IBJ 2025, 29(4): 247-259 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirsharifi S, Habibi M, Rahimi T, Foroohi F, Asadi Karam* M R. Immunogenic Potential of a Multi-Peptide Vaccine Construct Against Uropathogenic Escherichia coli-Associated Urinary Tract Infection. IBJ 2025; 29 (4) :247-259
URL: http://ibj.pasteur.ac.ir/article-1-5149-en.html
Abstract:  
Background: Urinary tract infection caused by uropathogenic E. coli (UPEC) is a common infectious disease. The growing frequency of antibiotic resistance highlights the need for alternative strategies, such as vaccines, to combat UTIs. This study aimed to evaluate the immunogenicity of a novel vaccine candidate targeting UPEC.
Methods: Different bioinformatics servers were used to design a vaccine candidate composed of PapG II and FimH antigens from UPEC, along with the N- (1-173) and C-terminal (401-495) domains of FliC from Salmonella typhimurium. The final construct was cloned into the pET28a vector, expressed, purified, and confirmed using SDS-PAGE and Western blotting. Mice were immunized with the recombinant protein, both with and without alum adjuvant, and antibody responses were measured using ELISA.
Results: The final vaccine construct included one domain of PapG II (81 aa) and FimH (83 aa). The conserved domains of FliC were incorporated into the construct. SDS-PAGE and Western blot confirmed the purification of the protein, with a size of 53 kDa. Immunization of mice with PapG.FimH.FliC protein induced significantly higher levels of serum IgG, IgG isotypes, IgA, as well as mucosal IgA and IgG responses compared to the controls (p < 0.05). The addition of alum to the protein significantly enhanced serum IgG1 and IgA and mucosal IgG, compared to the protein without alum (p < 0.05).
Conclusion: The vaccine construct induced significant humoral responses in the mouse model, suggesting its potential as a promising candidate against UPEC. However, additional experimental analyses are required to validate the efficacy of the vaccine construct.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Mancuso G, Midiri A, Gerace E, Marra M, Zummo S, Biondo C. Urinary tract infections: The current scenario and future prospects. Pathogens. 2023;12(4):623. [DOI:10.3390/pathogens12040623]
2. Nielubowicz GR, Mobley HLT. Host-pathogen interactions in urinary tract infection. Nat Rev Urol. 2010;7(8):430-41. [DOI:10.1038/nrurol.2010.101]
3. Mobley HL, Jarvis KG, Elwood JP, Whittle DI, Lockatell CV, Russell RG, et al. Isogenic P‐fimbrial deletion mutants of pyelonephritogenic Escherichia coli: The role of α Gal (1-4) β Gal binding in virulence of a wild‐type strain. Mol Microbiol. 1993;10(1):143-55. [DOI:10.1111/j.1365-2958.1993.tb00911.x]
4. Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, et al. Urinary tract infections caused by uropathogenic Escherichia coli: Mechanisms of infection and treatment options. Int J Mol Sci. 2023;24(13):10537. [DOI:10.3390/ijms241310537]
5. Ashkar AA, Mossman KL, Coombes BK, Gyles CL, Mackenzie R. FimH adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling. Plos Pathog. 2008;4(12):1000233. [DOI:10.1371/journal.ppat.1000233]
6. Mian MF, Lauzon NM, Andrews DW, Lichty BD, Ashkar AA. FimH can directly activate human and murine natural killer cells via TLR4. Mol Ther. 2010;18(7):1379-88. [DOI:10.1038/mt.2010.75]
7. Facciolà A, Visalli G, Laganà A, Di Pietro A. An overview of vaccine adjuvants: Current evidence and future perspectives. Vaccines. 2022;10(5):819. [DOI:10.3390/vaccines10050819]
8. Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, et al. Vaccine adjuvants: Mechanisms and platforms. Signal Transduction and Targeted Therapy. 2023;8(1):283. [DOI:10.1038/s41392-023-01557-7]
9. Hajam IA, Dar PA, Shahnawaz I, Jaume JC, Lee JH. Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med. 2017;49(9):373. [DOI:10.1038/emm.2017.172]
10. Melican K, Sandoval RM, Kader A, Josefsson L, Tanner GA, Molitoris BA, et al. Uropathogenic escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. Plos Pathog. 2011;7(2):1001298. [DOI:10.1371/journal.ppat.1001298]
11. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2004;32:115-9. [DOI:10.1093/nar/gkh131]
12. Krammer E-M, Bridot C, Serna S, Echeverria B, Semwal S, Roubinet B, et al. Structural insights into a cooperative switch between one and two FimH bacterial adhesins binding pauci- and high-mannose type N-glycan receptors. J Biol Chem. 2023;299(5):104627. [DOI:10.1016/j.jbc.2023.104627]
13. Lane M, Mobley HLT. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int. 2007;72(1):19-25. [DOI:10.1038/sj.ki.5002230]
14. Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):4. [DOI:10.1186/1471-2105-8-4]
15. Paul S, Sidney J, Sette A, Peters B. TepiTool: A pipeline for computational prediction of T cell epitope candidates. Curr Protoc Immunol. 2016;114:18.19.1-18. [DOI:10.1002/cpim.12]
16. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784-8. [DOI:10.1093/nar/gkg563]
17. Dimitrov I, Flower DR, Doytchinova I. AllerTOP--a server for in silico prediction of allergens. BMC Bioinformatics. 2013;14(6):4. [DOI:10.1186/1471-2105-14-S6-S4]
18. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Consortium OSDD, et al. In silico approach for predicting toxicity of peptides and proteins. Plos One. 2013;8(9):73957. [DOI:10.1371/journal.pone.0073957]
19. Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein-Sol: A web tool for predicting protein solubility from sequence. Bioinformatics. 2017;33(19):3098-100. [DOI:10.1093/bioinformatics/btx345]
20. Garnier J. GOR secondary structure prediction method version IV. Meth Enzym RF Doolittle Ed. 1998;266:540-53. [DOI:10.1016/S0076-6879(96)66034-0]
21. Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725-38. [DOI:10.1038/nprot.2010.5]
22. Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40:294-7. [DOI:10.1093/nar/gks493]
23. Wiederstein M, Sippl MJ. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:407-10. [DOI:10.1093/nar/gkm290]
24. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26(2):283-91. [DOI:10.1107/S0021889892009944]
25. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The cluspro web server for protein-protein docking. Nat Protoc 2017;12(2):255-78. [DOI:10.1038/nprot.2016.169]
26. Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics. 2016;32(23):3676-8. [DOI:10.1093/bioinformatics/btw514]
27. Laskowski RA. PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Res. 2001;29(1):221-2. [DOI:10.1093/nar/29.1.221]
28. Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. Plos One. 2010;5(4): 9862. [DOI:10.1371/journal.pone.0009862]
29. Karam MRA, Rezaei AA, Siadat SD, Habibi M, Bouzari S. Evaluation of prevalence, homology and immunogenicity of dispersin among enteroaggregative Escherichia coli isolates from Iran. Iranian biomedical journal. 2017;21(1):40. [DOI:10.18869/acadpub.ibj.21.1.40]
30. Shahbazi S, Badmasti F, Habibi M, Sabzi S, Goodarzi NN, Farokhi M, et al. In silico and in vivo Investigations of the Immunoreactivity of Klebsiella pneumoniae OmpA Protein as a Vaccine Candidate. Iranian Biomed J. 2024;28(4):156. [DOI:10.61186/ibj.4023]
31. Chen X, Zaro JL, Shen W-C. Fusion protein linkers: Property, design and functionality. Adv Drug Deliv Rev. 2013;65(10):1357-69. [DOI:10.1016/j.addr.2012.09.039]
32. Gupta S, Kumar P, Rathi B, Verma V, Dhanda RS, Devi P, et al. Targeting of uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC. Sci Rep. 2021;11(1):17801. [DOI:10.1038/s41598-021-97224-4]
33. Dhakal BK, Kulesus RR, Mulvey MA. Mechanisms and consequences of bladder cell invasion by uropathogenic Escherichia coli. Eur J Clin Invest. 2008;38(2):2-11. [DOI:10.1111/j.1365-2362.2008.01986.x]
34. Karam MRA, Habibi M, Bouzari S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against uropathogenic Escherichia coli. Mol Immunol. 2019;108:56-67. [DOI:10.1016/j.molimm.2019.02.007]
35. Saldanha L, Langel Ü, Vale N. In silico studies to support vaccine development. Pharmaceutics. 2023;15(2):654. [DOI:10.3390/pharmaceutics15020654]
36. Khalid K, Poh CL. The promising potential of reverse vaccinology-based next-generation vaccine development over conventional vaccines against antibiotic-resistant bacteria. Vaccines. 2023;11(7):1264. [DOI:10.3390/vaccines11071264]
37. Kudinha T, Kong F. Distribution of papG alleles among uropathogenic Escherichia coli from reproductive age women. J Biomed Sci. 2022;29(1):66. [DOI:10.1186/s12929-022-00848-5]
38. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. [DOI:10.1126/science.1225829]
39. Roberts JA, Kaack MB, Baskin G, Chapman MR, Hunstad DA, Pinkner JS, et al. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J Urol. 2004;171(4):1682-5. [DOI:10.1097/01.ju.0000116123.05160.43]
40. O'brien VP, Hannan TJ, Nielsen HV, Hultgren SJ. Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol Spectr. 2016;4(1):1128. [DOI:10.1128/microbiolspec.UTI-0013-2012]
41. Eldridge GR, Hughey H, Rosenberger L, Martin SM, Shapiro AM, D'Antonio E, et al. Safety and immunogenicity of an adjuvanted Escherichia coli adhesin vaccine in healthy women with and without histories of recurrent urinary tract infections: Results from a first-in-human phase 1 study. Hum Vaccin Immunother. 2021;17(5):1262-70. [DOI:10.1080/21645515.2020.1834807]
42. Starks CM, Miller MM, Broglie PM, Cubbison J, Martin SM, Eldridge GR. Optimization and qualification of an assay that demonstrates that a FimH vaccine induces functional antibody responses in women with histories of urinary tract infections. Hum Vaccin Immunother. 2021;17(1):283-92. [DOI:10.1080/21645515.2020.1770034]
43. Tseng C-C, Lin W-H, Wu A-B, Wang M-C, Teng C-H, Wu J-J. Escherichia coli FimH adhesins act synergistically with PapGII adhesins for enhancing establishment and maintenance of kidney infection. J Microbiol Immunol Infect. 2022;55(1):44-50. [DOI:10.1016/j.jmii.2020.09.001]
44. Rhee JH, Khim K, Puth S, Choi Y, Lee SE. Deimmunization of flagellin adjuvant for clinical application. Curr Opin Virol. 2023;60:101330. [DOI:10.1016/j.coviro.2023.101330]
45. Huleatt JW, Jacobs AR, Tang J, Desai P, Kopp EB, Huang Y, et al. Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity. Vaccine. 2007;25(4):763-75. [DOI:10.1016/j.vaccine.2006.08.013]
46. Bargieri DY, Rosa DS, Braga CJ, Carvalho BO, Costa FT, Espíndola NM, et al. New malaria vaccine candidates based on the Plasmodium vivax merozoite surface protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin. Vaccine. 2008;26(48):6132-42. [DOI:10.1016/j.vaccine.2008.08.070]
47. McSorley SJ, Ehst BD, Yu Y, Gewirtz AT. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol. 2002;169(7):3914-9. [DOI:10.4049/jimmunol.169.7.3914]
48. Laera D, HogenEsch H, O'Hagan DT. Aluminum adjuvants-'Back to the Future'. Pharmaceutics. 2023;15(7):1884. [DOI:10.3390/pharmaceutics15071884]
49. Su Z, Boucetta H, Shao J, Huang J, Wang R, Shen A, et al. Next-generation aluminum adjuvants: Immunomodulatory layered double hydroxides nano alum reengineered from first-line drugs. Acta Pharm Sin B. 2024;14(11):4665-82. [DOI:10.1016/j.apsb.2024.09.012]
50. Habibi M, Karam MRA, Bouzari S. Evaluation of prevalence, immunogenicity and efficacy of FyuA iron receptor in uropathogenic Escherichia coli isolates as a vaccine target against urinary tract infection. Microb Pathog. 2017;110:477-83. [DOI:10.1016/j.micpath.2017.07.037]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb