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ABSTRACT

Background: Urinary tract infection caused by UPEC is a common infectious
disease. The growing frequency of antibiotic resistance highlights the need for
alternative strategies, such as vaccines, to combat UTls. This study aimed to
evaluate the immunogenicity of a novel vaccine candidate targeting UPEC.
Methods: Different bioinformatics servers were used to design a vaccine
candidate composed of PapG Il and FimH antigens from UPEC, along with the
N- (1-173) and C-terminal (401-495) domains of FliC from S. typhimurium. The
final construct was cloned into the pET28a vector, expressed, purified, and
confirmed using SDS-PAGE and Western blotting. Mice were immunized with
the recombinant protein, both with and without alum adjuvant, and antibody
responses were measured using ELISA.

Results: The final vaccine construct included one domain of PapG Il (81 aa) and
FimH (83 aa). The conserved domains of FIiC were incorporated into the
construct. SDS-PAGE and Western blot confirmed the purification of the
protein, with a size of 53 kDa. Immunization of mice with PapG.FimH.FliC
protein induced significantly higher levels of serum IgG, IgG isotypes, IgA, as well
as mucosal IgA and IgG responses compared to the controls (p < 0.05). The
addition of alum to the protein significantly enhanced serum IgG1 and IgA and
mucosal IgG, compared to the protein without alum (p < 0.05).

Conclusion: The vaccine construct induced significant humoral responses in the
mouse model, suggesting its potential as a promising candidate against UPEC.
However, additional experimental analyses are required to validate the efficacy
of the vaccine construct. DOI: 10.61186/ibj.5149
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INTRODUCTION

rinary tract infection is recognized as the second
Ucommon infectious disease in humans. Its high

prevalence, along with the increasing frequency
of antibiotic resistance among UTI-causing pathogens,
highlights the need for alternative strategies to manage
these infections. E. coli strains are the main cause of all
types of UTIs, and most research has focused on these
strainst!,

UPEC presents various VFs that facilitate
colonization and invasion of the host tissues. Key VFs
include adhesions, siderophores, toxins, surface
polysaccharides, and outer membrane proteins(?.
Among them, adhesions have a wide diversity among
different UPEC classes. P fimbriae are among the most
important adhesions, mediating UPEC binding to host
surfaces through PapG subunit. The Pap gene cluster,
composed of 11 genes, encodes papA, papEF, and the
adhesion gene papG. PapG exists in four molecular
variants (I-IV), each with distinct receptor-binding
properties that may influence host specificity and
clinical manifestations of UTI®), Type 1 pili are another
colonization factor in UPEC, enabling the attachment of
the strains to the oligomannose-containing
glycoproteins on the human bladder. The FimH
adhesion, located on type 1 pili, plays a critical role in
mediating the colonization, invasion, and formation of
intracellular reservoirs by UPEC in the bladderl.
Studies have indicated that, similar to LPS, FimH acts
as a ligand for TLR-4 and can stimulate the immune
system, making it a potential innate adjuvant for vaccine
development[>-61,

Subunit vaccines, which utilize proteins or peptides,
often exhibit low immunogenicity and require effective
adjuvants to elicit robust and long-lasting immune
responses!’®l. FliC, the major structural protein of
flagella in motile bacteria, activates innate immune
responses by recognizing TLR-5 on immune cells,
hence stimulating acquired immunity. Therefore, the
FliC of bacteria, especially FliC from S. syphimurium,
has been applied as a vaccine adjuvant in different
studiesl.

Previous research has shown that type 1 and P
fimbriae are essential for bladder colonization and
ascension of UPEC into the kidneys, respectively!'l.
Therefore, incorporating FimH and PapG adhesions
from type 1 and P pili into a single vaccine construct,
may offer protection against both cystitis and
pyelonephritis caused by UPEC in the host.

In the present study, we aimed to design a novel
vaccine construct composed of the PapG and FimH
antigens from the UPEC strain, as well as the F1iC from
S. typhimurium strain as an innate adjuvant. The vaccine
construct was designed using bioinformatics and
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immunoinformatics  techniques, expressed in a
prokaryotic system and evaluated for its ability to
induce humoral immune responses in a mouse model.

MATERIALS AND METHODS

Extraction of protein sequence

The protein sequences of PapG II (UniProt: O86476-
1) and FimH (UniProt: P08191) from E. coli subsp.
CFT073, as well as FliC (UniProt: P06179) from S.
typhimurium, were extracted from the Uniprot database
(https://www .uniprot.org/)'!l. For further analysis, we
focused on residues 22-174 of the FimH protein
sequence, which correspond to the binding (lectin)
domain!'?, and residues 21-226 of PapG 11, representing
the carbohydrate-binding domain!'3l. Also, we selected
the DO and D1 domains of FliC, comprising residues 1-
173 from the N-terminal region and residues 401-495
from the C-terminal region.

Prediction of B-lymphocyte epitopes

To identify the potential B-cell epitopes within the
PapG II and FimH protein sequences, three different
servers were used: ABCpred (http://www.imtech.res.in/
raghava/abcpred), BCpred (http://ailab.ist.psu.edu/
bepred/), and IEDB (http://tools.immuneepitope.org/
beell/). The regions identified as epitopes by all three
servers, were selected for further analysis. These
selected B-cell epitopes were then evaluated for their
antigenicity using VaxiJen v2.0 (http://www.
ddgpharmfac.net/vaxijen/VaxiJen/VaxiJen.html)!'4l,

Prediction of T-cell epitopes

T-cell epitopes were predicted using TepiTool
(http://tools.iedb.org/tepitool/)!'3]. For MHC-I epitope
prediction, we fixed the peptide length to 9mer, which
is the preferred length for ligand binding to HLA alleles.
We also selected 27 of the most frequent human HLA-
A and HLA-B alleles, as well as mouse alleles H-2-Dd,
H-2-Kd, and H-2-Ld, for the analysis of MHC-I binding
epitopes with percentile rank <1. For predicting MHC-
II binding epitopes (15mer), we selected all human DR

alleles  including DRB1*01:01, DRB1*03:01,
DRB1*04:01, DRB1*04:05, DRB1*07:01,
DRB1*08:02, DRB1*09:01, DRB1*11:01,
DRB1#*12:01, DRB1*13:02, DRB1*15:01,
DRB3*01:01, DRB3*02:02, DRB4*01:01, and

DRB5*01:01 and mouse alleles (H2-IAd and H2-1Ed)
with percentile rank <10.

Evaluation of the vaccine construct

The physicochemical properties of the vaccine
construct were analyzed using the Expasy Protparam
online server (https://web.expasy.org/protparam/)!6],
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The antigenicity of the vaccine was assessed using
VaxiJen 2.0. For screening allergenicity, we used the
AllerTop v2.0 server (https://www.ddg-
pharmfac.net/AllerTOP/method.html)['7], while toxicity
screening was  performed using  ToxinPred
(https://webs.iiitd.edu.in/raghava/toxinpred/algo.php)!!
81, Additionally, we predicted protein solubility upon
overexpression in E. coli using the Protein-sol server
(https://protein-sol.manchester.ac.uk/)!*°1.

Prediction of the secondary structure

To predict the secondary structure of the vaccine
construct, we employed the Garnier-Osguthorpe
Robson IV server (https://npsa-prabi.ibep.fr/cgibin/
npsa_automat.pl?page=/NPSA/npsa_gor4.html)?%, In
this analysis, we input the amino acid sequence of the
construct to determine its secondary protein structure.

Prediction of the tertiary structure of the vaccine
construct

The tertiary structure of the vaccine construct was
predicted using the I-TASSER (https://zhanggroup.org/
I-TASSER/)!, This server computes the C-score to
assess the quality of the predicted models. The selected
3D model was then refined using the GalaxyRefine
server  (https://galaxy.seoklab.org/cgi-bin/submit.cgi?
type =REFINE) to improve its structural quality??!. The
Discovery Studio visualizer was employed to visualize
the 3D models. The overall quality of the protein
structure was evaluated using the Z-score generated by
ProSA-web (https://prosa.services.came.sbg.ac.at/
prosa.php)?*l. Additionally, the Ramachandran plot was
created using the SAVES v6.0 PROCHECK tool
(https://saves.mbi.ucla.edu/)?4,

Molecular docking of the vaccine construct with
TLRs

The binding ability of the vaccine construct to TLR-5
and TLR-4 was evaluated through molecular docking,
using the Cluspro 2.0 server (http://cluspro.bu.edu/
login.php)23]. The PDB files for TLR-5 (PDB ID: 3J0A)
and TLR-4 (PDB ID: 3FXI) were obtained from the
RCSB PDB website (https://www.rcsb.org/). The
results obtained from Cluspro 2.0 were further analyzed
using PRODIGY (https://nestor.science.uu.nl/prodigy/)
to find the binding affinity (kcal/mol) and the
dissociation constant (Kd) (M) of the docked vaccine
construct-TLR complex[?), The Discovery Studio
visualizer was employed to visualize the docking
complexes. Furthermore, PDBsum was used to identify
and map the interacting residues between the vaccine
construct and TLRs[?7],
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In silico evaluation of immune response

To evaluate the potential immune response of the
vaccine construct, we performed in silico immune
simulations using the C-ImmSim online server
(https://kraken.iac.rm.cnr.it/C-IMMSIM/)1281.  In the
simulation step, we administered three injections at time
points 1, 84, and 168 (one time step corresponds to 8 h
in real life). All other parameters were at their default
values.

Expression and purification of the recombinant
protein

The codon-optimized gene construct was synthesized
by Biomatik Company (Canada) and subsequently
cloned into the pET28a vector. The recombinant vector
was transformed into the competent E. co/i BL21 (DE3)
cells, which were cultured on LB agar plates overnight.
Colonies containing the recombinant plasmid were
confirmed through double digestion with Ncol and
Hindll enzymes, followed by sequencing. For protein
expression, the bacteria were cultured in LB broth
medium, and protein expression was induced by IPTG.
The bacterial cells were harvested by centrifugation and
analyzed by SDS-PAGE. The protein bands were
confirmed using Western blotting with anti-His tag
monoclonal antibody (Sigma, USA). The recombinant
protein was purified wusing Ni-NTA affinity
chromatography (Qiagen, USA)?°. A commercial LPS
removal kit (Thermo Fisher Scientific, Lithuania) was
employed to remove LPS contamination from the
recombinant protein. Finally, the purified protein was
dialyzed and quantified by the BCA assay kit
(DNAbiotech, Iran).

Immunization of mice

Female BALB/C mice (6-8 weeks) were purchased
from the Pasteur Institute of Iran (Tehran). The mice
were housed in a room with a temperature of 20-22 °C
and humidity levels of 50-60%. They were provided
with standard rodent chow, which had access to water
ad libitum. The mice were randomly divided into four
groups (n = 10/group). Group 1 was vaccinated with the
recombinant protein alone (30 pg), group 2 was given
the recombinant protein combined with aluminum
hydroxide (alum) adjuvant (30 pg of protein + 200 pg
of alum), group 3 received alum alone (200 pg), and
group 4 was administered PBS alone. All vaccine
formulations were administered subcutaneously in a
total volume of 100 pl on days 0, 14, and 28. Sera and
urine samples were collected from each group 14
days after the last vaccine dose to measure antibody
levels.
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Antibody assay test

ELISA was used to evaluate the antibody responses
specific to the recombinant protein in serum and urine
samples collected from the mice. Briefly, purified
protein (10 pg/ml) was coated onto microtiter plates
(Greiner, Germany). Following overnight incubation,
the plates were washed several times, and the sera
(diluted from 1:100 to 1:64500) or urine (diluted from
1:2 to 1:50) were added. After antigen-antibody binding,
the plates were washed and incubated with horseradish
peroxidase-conjugated rabbit anti-mouse antibody
(Sigma, USA). The plates were washed again, and the
TMB substrate was added to the plates. The reaction was
stopped after 20 min, and OD was measured at 450
nm30)

Statistical analysis

A statistical analysis of the immune responses was
carried out using one-way analysis of variance
(ANOVA), followed by Student’s t-test and Tukey’s
HSD tests. GraphPad Prism software (version 6.0) was
used to generate the figures illustrating immune
responses. In the experiments, p values <0.05 were
considered statistically significant.

RESULTS

Retrieval and alignment of protein sequences

In this study, the protein sequences of PapG II and
FimH were obtained from the UniProt database to create
a vaccine construct targeting UPEC strains. The
alignment of these protein sequences showed identities
of over 97.9% for PapG II and 98.7% for FimH among
E. coli strains, indicating that these proteins are
conserved.

Prediction of linear B-cell epitope

The mature sequences of the PapG II and FimH were
evaluated using ABCpred, BCPred, and BepiPred v2.0.
Epitopes were selected based on high prediction scores
and overlapping results from the three online servers.
The analysis identified one region in each protein with
the highest linear B-cell epitopes. The overlapping
results of the predicted linear B-cell epitopes from the
three servers are shown in Table 1. The regions
comprising amino acids 46 to 128 of the lectin domain
of FimH (NDYPETITDYVTLQRGAAYGGVLSSF
SGTVKYNGSSYPFPTTSETPRVVYNSRTDKPWPV
AL YLTPVSSAGGVAIKAGSLIAV) with the highest
number of B-cell epitopes were selected. There were
seven B-cell epitopes for FimH in the selected region.
VaxiJen score for the region was 0.43, exceeding the
threshold score (0.4). In addition, amino acids 70 to 150
of the carbohydrate-binding domain of PapG II
(VMTQNGYPLFIEVHNKGSWSEENTGDNDSYFFL
KGYKWDERAFDTANLCQKPGEKTRLTEKFDDII
FKVALPADLPLGDYS) with seven B-cell epitopes
and a vaxiJen score of 0.53 were selected.

Prediction of T-cell epitopes of proteins

The prediction of T-cell epitopes was conducted for
selected regions of PapG II (amino acids 70-150) and
FimH (amino acids 46-128) using the IEDB Tepitool
server. The results showed that peptide fragments from
each antigen contained several T-cell epitopes for
different human and mouse MHC-I and MHC-II alleles.
For the selected regions of FimH, the TepiTool server
predicted 29 and 10 epitopes (9mer) for human and
BALB/c H-2 MHC T alleles, respectively. Overall, 18
epitopes were identified for PapG II that interacted with
23 MHC-I alleles, along with six epitopes predicted for
BALB/c H-2 class I (Table 2).

Table 1. The overlapped results of the predicted linear B-cell epitopes from three servers

Protein Linear B-cell epitope Sever Antigenicity (cut off > 0.4)
KGSWSEENTGDNDSYF ABCpred 0.50
VMTQNGYPLFIEVHNK ABCpred 0.48

PapG 11 GEKTRLTEKFDDIIFK ABCpred 0.99
NKGSWSEENTGDNDSY Bcepred 0.69
FLKGYKWDERAFDTAN Bcepred 0.27

KWDERAFDTANLCQKPGEKTRLTEKF IEDB 0.81
KGSWSEENTGDND 1IEDB 0.95
YPFPTTSETPRVVYNS ABCpred 0.49
PETITDYVTLQRGAAY ABCpred 0.10

FimH SGTVKYNGSSYPFPTT ABCpred 0.40
YNSRTDKPWPVALYLT ABCpred 0.76
PFPTTSETPRVVYNSR Bcepred 0.41
SSYPFPTTSETPRVVYNSRTDKP IEDB 0.49
QRGAAYGGVLSSFS IEDB 0.20
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Table 2. MHC-I binding epitopes predicted by the TepiTool server with antigenicity score exceeding the threshold value

Epitope No. of human

Antigenicity

Epitope No. of mouse

Protein sequence MHC-I alleles (cut off > 0.4) sequence MHC-I alleles Antigenicity
MTQNGYPLF 10 Non-antigen VMTQNGYP H-2-Kd Non-antigen
TQNGYPLFI 4 0.74 L H-2-Dd Non-antigen
NGYPLFIEV 3 0.70 MTQNGYPL H-2-Dd 0.74
IEVHNKGSW 2 Non-antigen F H-2-Dd, H-2-Ld 0.70
NTGDNDSYF 2 0.50 TQNGYPLFI H-2-Kd 1.26
TGDNDSYFF 1 Non-antigen NGYPLFIEV H-2-Ld 0.91
GDNDSYFFL 1 Non-antigen KFDDIIFKV
PapG 11 DSYFFLKGY 3 Non-antigen VALPADLPL
(70-150) SYFFLKGYK 3 Non-antigen
YFFLKGYKW 6 0.5
GYKWDERAF 2 0.77
CQKPGEKTR 1 1.66
KPGEKTRLT 1 1.41
TEKFDDIIF 3 0.4
KFDDIIFKV 5 1.26
DDIIFKVAL 1 0.87
VALPADLPL 2 0.91
PADLPLGDY 1 Non-antigen
DYPETITDY 2 Non-antigen YPETITDYV H-2-Ld Non-antigen
YPETITDYV 3 Non-antigen RGAAYGGV H-2-Dd Non-antigen
ETITDYVTL 2 Non-antigen L H-2-Kd Non-antigen
ITDYVTLQR 6 Non-antigen AYGGVLSS H-2-Dd 0.4
VTLQRGAAY 7 Non-antigen F H-2-Kd 0.41
AYGGVLSSF 4 Non-antigen SSFSGTVKY H-2-Ld 0.58
VLSSFSGTV 2 Non-antigen KYNGSSYPF H-2-Ld Non-antigen
LSSFSGTVK 1 Non-antigen YPFPTTSET H-2-Ld, H-2- 1.36
FimH SSFSGTVKY 13 Non-antigen TDKPWPVA Dd, H-2-Kd
(46-128) TVKYNGSSY 5 0.74 L H-2-Kd 0.75
KYNGSSYPF 4 Non-antigen KPWPVALY H-2-Dd Non-antigen
SSYPFPTTS 1 Non-antigen L
YPFPTTSET 4 0.58
TTSETPRVV 2 0.82 LYLTPVSSA
TSETPRVVY 5 0.76 VAIKAGSLI
ETPRVVYNS 1 Non-antigen
TPRVVYNSR 1 Non-antigen
VVYNSRTDK 3 0.90
YNSRTDKPW 1 0.47
RTDKPWPVA 2 Non-antigen
TDKPWPVAL 2 Non-antigen
DKPWPVALY 1 0.49
KPWPVALYL 5 1.36
ALYLTPVSS 1 0.58
TPVSSAGGV 1 0.95
SSAGGVAIK 4 2.07
GVAIKAGSL 1 0.96
VAIKAGSLI 1 Non-antigen
AIKAGSLIA 1 Non-antigen

Based on the findings from the Tepitool, 10 epitopes
were predicted for 23 human MHC-II alleles, and four
epitopes were identified for BALB/c H-2 class I alleles,
specifically H2-IAd and H2-IEd for FimH. Regarding
PapG 11, seven epitopes were predicted for 17 human
MHC II alleles, and one epitope for the mouse MHC-II
H2-IEd. The selected human and mouse MHC-II
epitopes are summarized in Table 3. Given the role of

Iran. Biomed. J. 29 (4): 247-259

T-cells in generating protective responses against UTIs
caused by UPEC, the selected regions could increase the
likelihood of inducing T-cell responses against UPEC.

Design of the final vaccine construct based on the
immunodominant fragments

The final vaccine construct was made with one
domain of PapG II (81 amino acids) and FimH (83

251


https://www.nature.com/articles/s41598-020-73179-w#Tab2
http://dx.doi.org/10.61186/ibj.5149
http://ibj.pasteur.ac.ir/article-1-5149-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-10-22 ]

[ DOI: 10.61186/ibj.5149 ]

Evaluation of the Immunogenicity of PapG.FimH.FIliC

Mirsharifi et al.

Table 3. MHC-II binding epitopes predicted by the TepiTool server with antigenicity score exceeding the threshold value

. Epitope li\l (:;lglf] Antigenicity Peptide 20' of L
Protein sequence MlIl-IC-II (cut off > 0.4) Sequence M}(I)gs_en Antigenicity
alleles alleles
YPLFIEVHNKGSWSE 6 0.53 FDDIIFKVALPADLP H2-IEd 0.83
EVHNKGSWSEENTGD 1 0.66
DSYFFLKGYKWDERA 3 Non-antigen
PapGII KGYKWDERAFDTANL 5 0.49
EKTRLTEKFDDIIFK 4 0.65
TEKFDDIIFKVALPA 4 0.76
DIIFKVALPADLPLG 5 0.70
DYPETITDYVTLQRG 7 Non-antigen PETITDYVTLQRGAA H2-IEd
ITDYVTLQRGAAYGG 11 0.48 TPRVVYNSRTDKPWP H2-IEd
LQRGAAYGGVLSSFS 1 Non-antigen WPVALYLTPVSSAGG H2-IAd
AYGGVLSSFSGTVKY 2 Non-antigen TPVSSAGGVAIKAGS H2-IAd
FimH LSSFSGTVKYNGSSY 3 0.41
PFPTTSETPRVVYNS 2 0.44
SETPRVVYNSRTDKP 3 0.72
PVALYLTPVSSAGGV 3 0.91
LTPVSSAGGVAIKAG 5 1.06
SAGGVAIKAGSLIAV 1 1.00

amino acids). The domains were joined together by a
flexible linker sequence (GGGGSGGGGS). To enhance
the immunogenicity of the vaccine construct, the N- (1-
173) and C-terminal (401-495) conserved domains of
F1iC were placed at the beginning and end of the vaccine
construct, respectively, using a rigid EAAAK linker.
This linker was used to keep a fixed distance between
the protein domains(*'l. Therefore, the vaccine construct
was designed with 452 amino acid residues (Fig. S1).

Characterization of the vaccine construct

The vaccine sequence had a theoretical pl of 4.87, a
molecular weight of 48.21 kDa, with an estimated half-
life of >10 h for E. coli. The vaccine sequence also had
an aliphatic index of 85.11, demonstrating significant
thermostability. The instability index was 34.10,
categorizing the sequence as stable (<40). Additionally,
the vaccine sequence showed a negative GRAVY of -
0.371. This negative GRAVY value indicates that the
protein is non-polar and hydrophilic, making it likely to
interact with water molecules. In addition, it had an
antigenicity of 0.647 (greater than the threshold) and
showed no allergenicity. According to the Protein-sol
results, the vaccine was soluble, with a solubility score
of 0.52 (greater than 0.45).

Secondary structure prediction of the recombinant
protein

According to the data obtained from the GOR IV
server, the final secondary structure of the vaccine
consisted of 38.50% alpha helices, 15.04% beta sheets,
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and 46.46% random coils. A graphical representation of
the secondary structure features is shown in Figure S2.

Prediction of the tertiary structure, refinement, and
validation

The 3D structure of the vaccine construct was
predicted by the I-TASSER server. The model
exhibiting the highest C-score was chosen as the optimal
model (Fig. S3A). This 3D model was further refined
using the GalaxyRefine web server, which generates
five optimized 3D models. The best model (Fig. S3B)
showed a GDTHA value of 0.9287, an RMSD value of
0.485, a MolProbity score of 2.163, and a Clash score of
28.7. The ProSA web tool also indicated that the overall
quality Z-value of the optimized model was -8.14,
which is considered high quality (Fig. S3C). Analysis of
the Ramachandran plot of the refined model revealed
that 89.8% of the residues were located in the most
favored regions, 7.2% in the additional allowed regions,
1% in the generously allowed regions, and 2% in the
disallowed regions (Fig. S3D).

Analysis of molecular docking interactions

To characterize the binding affinity of the vaccine
construct for human TLRs, we utilized ClusPro 2.0 for
molecular docking. For each docking, the server
generated a total of 30 clusters, and the cluster with the
lowest energy score was considered the result. The
lowest energy scores of the vaccine construct-TLR-5
and vaccine construct-TLR-4 docking complexes were
predicted to be -1164.5 and -981.1, respectively.
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Fig. 1. Analysis of the vaccine construct with TLRs. (A) The best-docked complex of the vaccine construct with TLR-5 showed a
binding energy of -1164.5. The vaccine construct is shown in green color, while the TLR-5 receptor is in red color. (B) The best-docked
complex of the vaccine construct with TLR-4 indicated a binding energy of 981.1. The vaccine construct is depicted in green color,
while TLR-5 receptor is in blue color. (C) The vaccine construct-TLR-5 complex was analyzed for interactions and 2D images were
taken. (D) The vaccine construct-TLR-4 complex was analyzed for interactions and the 2D images were taken (red: salt bridges, yellow:
disulfide bond, blue: hydrogen bond, and orange: non-bonded contacts).
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Fig. 2. In silico immune response simulations of the vaccine construct. (A) Simulation of antibody response upon antigen exposure,
showing rapid antigen clearance and robust production of IgM, IgG, and their subclasses following vaccination. (B) Simulation of B-
cell population, B-cell population dynamics, including total B-cells, memory B-cells, and isotype-specific responses (IgM, 1gG1, and
1g32), indicating effective induction of memory and isotype switching.

According to the PRODIGY results, the vaccine
construct exhibited the strongest affinity toward TLR-5
(AG =-21.1 kcal/mol) with Kd (M) at 25.0°C: 3.4E-16.
Strongest affinity toward TLR-4 (AG = —16.2 kcal/mol
with Kd (M) at 25.0°C: 1.3E-12 confirmed the high-
affinity binding patterns between the vaccine construct
and TLRs. The molecular docking results for vaccine
construct interacting with TLR-5 and TLR-4 were
visualized using the Discovery Studio visualizer
(Fig. 1A and 1B). The PDBSum analysis showed that
46 residues of TLR-5 (chain A) interacted with 32

residues of the vaccine construct (chain B). This
interaction included 3 salt bridges, 18 hydrogen bonds,
and 297 non-bonded contacts (Fig. 1C). The results of
docking of the vaccine construct with TLR-4 showed
that the number of interface residues of the vaccine
construct and TLR-4 was 37 and 45, respectively. A
total of 4 salt bridges, 22 hydrogen bonds, and 260 non-
bonded contacts were found in the vaccine construct-
TLR-4 complex (Fig. 1D). Overall, these results
indicate that the designed vaccine construct exhibits a
strong binding affinity for both TLR-4 and TLR-5.
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Fig. 3. Cloning of the gene and purification of the recombinant protein. (A) Confirmation of gene cloning by enzyme digestion
(lane 1: digested recombinant plasmid and M; Molecular weight marker), (B) evaluation of the purified protein by SDS-PAGE (lane
1: elution 1 of the purified protein), (C) confirmation of the purified protein by Western blot analysis (Lane 1: elution 1 of the purified
protein and lane 2: un-induced clone). Mw: Un-stained protein marker.
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Fig. 4. Evaluation of systemic antibody responses. BALB/c mice were injected with different vaccine formulations, including
PapG/FimH/FliC alone and PapG/FimH/FliC combined with alum. Control groups received alum and PBS. Blood samples were
collected two weeks after the last vaccine dose. The levels of (A) total IgG, (B) IgG isotypes, and (C) IgA responses in the vaccinated
groups were measured by ELISA. The results represent the mean values (£SD) of three repeated experiments at serum dilution of 1:100.
The difference between PapG/FimH/FliC and PapG/FimH/FliC combined with alum in inducing humoral responses is indicated by
brackets with p value. * Statistical significance of total IgG, IgG1, and IgG2a over control groups (p < 0.05).

Simulation of the Host’s immune response

An in silico simulation of the immune response was
performed to confirm the ability of the vaccine construct
to induce an immune response. The vaccine construct
demonstrated robust immune activity across primary,
secondary, and tertiary immune responses, followed by
the time steps of injection. As shown in Fig. 2A,
antibody  production began after the initial
immunization. All the antibody types peaked after the
secondary and tertiary vaccine exposure. The highest
antibody titer was related to IgM + IgG, followed by
IgM alone, IgG1 +1gG2, IgG1, and IgG2, indicating a
progression in immune response. In addition, an
increase in the population of memory B-cells was
observed (Fig. 2B).

Expression and purification of the recombinant
protein

The synthesized and codon-optimized gene construct
was cloned into the pET28a vector. After transformation
and culture on LB agar, the recombinant plasmids
containing the gene construct were confirmed by
enzyme digestion (Fig. 3A) and then sequenced (data
not shown). SDS-PAGE analysis showed protein
expression after adding 1 mM of IPTG and a 5 h
incubation time period (data not shown). The expression
of the induced protein was further confirmed by Western
blot analysis using a monoclonal antibody. The
recombinant protein was successfully purified using Ni-
NTA affinity chromatography, with its purity and
concentration confirmed by SDS-PAGE and Western
blotting (Fig. 3B and 3C). The size of the purified
protein was approximately 53 kDa. After applying the
LPS removal column, the LPS concentration reached
less than 1 EU/ml, as determined by the LAL assay. The
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concentration of the dialyzed and purified protein was
measured at 500 pg/ml using the BCA assay kit.

Responses of serum antibody

To investigate the immune responses elicited by the
vaccine candidate, we administered different vaccine
formulations to mice and measured the induced
responses. Serum samples were collected two weeks
after the last immunization and analyzed for levels of
antigen-specific IgG, IgG isotypes, and IgA antibodies
using ELISA. The results showed significantly
increased levels of serum IgG, IgG isotypes, and IgA
antibodies in the PapG/FimH/F1iC group after the third
vaccine dose, as compared to the control groups (p <
0.05; Fig. 4). Additionally, we observed that when alum
was added to PapG/FimH/FliC, the levels of total IgG,
IgGl, and IgA responses significantly increased
compared to the mice that received PapG/FimH/FIiC
alone (p < 0.05). However, there was no significant
difference in the IgG2a response between the mice that
received PapG/FimH/FliC and PapG/FimH/FliC in
combination with alum (p > 0.05).

Responses of mucosal antibody

To further confirm the production of IgG and IgA in
mucosal fluids, we measured the levels of anti-
PapG/FimH/FliC IgA and IgG in wurine samples
collected after the third immunization. The findings
revealed that immunization of mice with
PapG/FimH/FIiC significantly elicited both IgG and
IgA levels in the urine samples compared to the control
groups (p < 0.05; Fig. 5). Also, we observed
that the addition of alum to the recombinant protein
could significantly induce the mucosal IgG responses
more than PapG/FimH/FliC without alum (p=0.022;
Fig. 5B).
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Fig. 5. Evaluation of mucosal antibody responses in the urine. After the last vaccine dose, (A) IgG and (B) IgA levels were measured
in the urine samples collected from the immunized mice. The results represent the mean values (+SD) of three-repeated experiments.
Statistical analysis was performed using one-way ANOVA or student's t-test, with the p value indicating significant differences. *
Statistical significance of antibodies levels compared to the control groups (p < 0.05).

DISCUSSION

UTIs are common bacterial infections that affect
approximately 150 million people worldwide each year,
resulting in significant social costs?*2l. Certain types of
UTIs, such as recurrent UTIs, pyelonephritis, and
urosepsis, can be life-threatening and difficult to
managel!l. Various vaccine strategies have been
developed to combat UTIs; however, none of them have
successfully produced a universal and safe vaccine for
UTIs B3l Research has focused on evaluating the
efficacy of key VFs of UTI pathogens, especially UPEC
strains. These vaccine targets have been designed in
different forms, including single, fusion, and multi-
epitope, with some progressing to clinical trialsB4,

Effective defense against UTIs requires a broad
immune response that engages both innate and adaptive
immune mechanisms. Immunoinformatic approaches
can help design vaccines that activate all aspects of the
immune system by identifying immunodominant B- and
T-cell epitopes within candidate antigens. Using
immunoinformatic methods for vaccine development is
highly desirable due to their safety, cost-effectiveness,
and high efficiency®]. However, recombinant multi-
epitope vaccines face challenges, including low immune
response and dominant reactions to junctional epitopes.
To address these limitations, the use of effective
adjuvants and linkers is suggested¢],

P fimbriae are recognized as one of the most common
VFs of UPEC in the pathogenesis of UTlIs, especially
pyelonephritis®?. Research by Kudinha and Kong has
demonstrated that specific alleles of the PapG adhesion,
including PapG 1I, are strongly associated with
pyelonephritis®7, A recent study has evaluated a
vaccine candidate based on the PapA subunit from P
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fimbriae; however, the results were not promising2l.
Another study had reported that a vaccine candidate
containing PapDG successfully protected cynomolgus
monkeys from pyelonephritis infection[38-4],

FimH, a component of type 1 fimbriae, has emerged
as a promising vaccine target for UTIs caused by UPEC,
especially in cases of recurrent UTIs. Clinical trials of a
FimH-based vaccine candidate have demonstrated that
vaccination of mice and monkeys with FimH reduces
bladder colonization. In addition, treatment with anti-
FimH IgG has been found to decrease UPEC
colonization in the bladders of patients experiencing
recurrent UTIs*#21. Given the roles of type 1 and P
fimbriae in UPEC colonization of the bladder and
kidneys, as well as the potential synergistic effect
between FimH and PapG II in contributing to
pyelonephritis, a vaccine that combines both FimH and
PapG II may be more effective in preventing bladder
and kidney infections compared to the vaccines that
target either protein alonel*3,

The FliC from bacteria such as S. typhimurium has
been studied as an adjuvant, with some flagellin-based
vaccines entering clinical trials. For instance, a flagellin-
adjuvanted influenza vaccine has shown promising
results in phase I/II clinical trials(*}. Predictions from
ProsA and Ramachandran plots indicate that the
designed vaccine construct exhibits desirable properties.
The chimeric protein PapG/FimH/FliC indicated
essential properties of an ideal vaccine candidate,
especially the presence of B-cell epitopes and T-cell
binding peptides for MHC-I and MHC-II, which
stimulate both humoral and cellular immune responses.

Our animal studies revealed that subcutaneous
vaccination of mice with the chimeric protein, without
the use of alum adjuvant, not only induced systemic
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immune responses in serum but also induced mucosal
immune responses in the urine. Because the PapG/FimH
without FliC, and FliC alone groups were not included
in the study, making it challenging to definitely
elucidate the specific role of FIiC as an innate adjuvant.
Additional experiments are required to confirm the role
of FliC as an adjuvant in this vaccine formulation.
Moreover, similar to other studies, the possible adjuvant
effect of FimH in the vaccine construct may
significantly contribute to the elevated systemic and
mucosal humoral responses!>©],

Th1 responses are associated with the production of
IgG2a, while Th2 responses are characterized by
increased levels of IgG1 antibodies. In our study, mice
immunized with the vaccine construct exhibited higher
levels of IgGl (Th2) compared to IgG2a (Thl)
antibodies. This observation suggests that the vaccine
formulation tends to promote an antibody-mediated
immune response. Previous studies have reported that
FliC can induce both Thl and Th2 responses, with
evidence showing a preference for shifting responses
toward Th2 (humoral response)*>4"]. Additionally, the
inclusion of alum adjuvant in our study enhanced the
production of IgG1 (Th2) antibodies against the vaccine
construct. To further assess the Th1/Th2 profile among
the immunized mice, we measured the ratio of IgG1 to
IgG2a. The results showed that alum increased the
IgG1/1gG2a ratio and switched the immune responses
toward Th2. These results were in accordance with the
other studies which have reported alum as a stimulator
of Th2-type responses*®#1. Supporting our findings,
Habibi and colleagues have demonstrated that adding
alum to the FyuA antigen from a UPEC strain enhances
both IgG1l and IgG2a responses, with IgGl levels
exceeding those of IgG2al>"l,

CONCLUSION

In the present study, a chimeric protein was designed
by incorporating key domains of the FimH and PapG II
proteins of UPEC and incorporating the most promising
B- and T-cell epitopes. In addition, the conserved N- and
C-terminal domains of FIiC from S. #yphimurium were
included in the vaccine construct. Bioinformatics and
immunoinformatics analyses confirmed the quality of
the vaccine construct. In silico simulations of the
immune response showed elevated levels of B-cells.
Furthermore, the chimeric protein showed stable
interactions with TLR-4 and TLR-5, suggesting its
potential to activate innate immune responses. The
vaccine construct induced significant levels of systemic
IgG, IgG isotypes and IgA, along with mucosal antibody
responses in mice. The inclusion of alum adjuvant

Iran. Biomed. J. 29 (4): 247-259

significantly enhanced systemic IgG1 and mucosal IgG
levels compared to the non-adjuvanted construct.
Ongoing experiments are evaluating the cellular
immune responses and the protective efficacy of the
vaccine formulations in a mouse model.
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