Volume 29, Issue 4 (4-2025)                   IBJ 2025, 29(4): 228-235 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

G. Gyurjyan Q, G. Poghosyan G, K. Gasparyan V. Apoferritin-Functionalized with Wheat Germ Agglutinin and Loaded with Antibiotic for Targeting Bacteria. IBJ 2025; 29 (4) :228-235
URL: http://ibj.pasteur.ac.ir/article-1-5039-en.html
Abstract:  
Background: The selective delivery of drugs to their targets prevents their possible side effects; hence, the development of selective transport systems is considered extremely promising. In the present study, we aimed to develop a drug delivery system for targeting bacteria.
Methods: Functionalization of apoferritin with wheat germ agglutinin (WGA), as a bacteria-recognizing lectin, was conducted. Afterwards, the complex was loaded with ampicillin. The affinity of the conjugate to Gram-positive bacteria, Bacillus subtilis, was evaluated by anisotropic silver nanoparticles conjugated with this complex, and its interaction with the bacteria was also assessed.
Results: The drug-delivery capabilities of the composite were evaluated. Results from the disk diffusion assay revealed that its bactericidal activity is 10-fold greater compared to free antibiotics. The effectiveness of the bactericidal effects of ampicillin-loaded ferritin was also confirmed in whole blood.
Conclusion.  Lectin-conjugated and ampicillin-loaded apoferritin can be considered as effective drug delivery systems for targeting bacteria.

References
1. Bloom DE, Black S, Salisbury D, Rappuoli R. Antimicrobial resistance and the role of vaccines. Proc Natl Acad Sci USA. 2018;115(51):12868-71. [DOI:10.1073/pnas.1717157115]
2. Larsson J , Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol;20(5):1-13. [DOI:10.1038/s41579-021-00649-x]
3. Ascenzi P, Fanali G, Fasano M, Pallottini V, Trezza V. Clinical relevance of drug binding to plasma proteins. J Mol Struct. 2014;1077(1):4-13. [DOI:10.1016/j.molstruc.2013.09.053]
4. Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018:1705328. [DOI:10.1002/adma.201705328]
5. Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, et al. Drug delivery systems programmed and on-demand release. Adv Drug Deliv Rev. 2018;132,104-38. [DOI:10.1016/j.addr.2018.07.002]
6. Kim D, Whang CH, Hong J, Prayogo MC, Jung W, Lee S, et al. Glycocalyx-mimicking nanoparticles with differential organ selectivity for drug delivery and therapy. Adv Mater. 2024;36(27):2311283. [DOI:10.1002/adma.202311283]
7. Aguilera-Correa JJ, Gisbert-Garzarán M, Mediero A, Fernández-Aceñero MJ, de-Pablo-Velasco D, Lozano D, et al. Antibiotic delivery from bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis caused by methicillin-resistant Staphylococcus aureus. Acta Biomater. 2022, 154:608-25. [DOI:10.1016/j.actbio.2022.10.039]
8. Han H, Santos HA. Nano- and micro-platforms in therapeutic proteins delivery for cancer therapy: Materials and strategies. Adv Mater. 2024;36(45):2409522. [DOI:10.1002/adma.202409522]
9. Tian Y, Gao Z, Wang N, Hu M, Ju Y, Li Q, et al. Engineering poly(ethylene glycol) nanoparticles for accelerated blood clearance inhibition and targeted drug delivery. J Am Chem Soc. 2022;144(40):18419-28. [DOI:10.1021/jacs.2c06877]
10. Raj S, Khurana S, Choudhari R, Kumar K, Кamal,MA, Garg N, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol.2021;69:166-77. [DOI:10.1016/j.semcancer.2019.11.002]
11. Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372. [DOI:10.3390/molecules27041372]
12. Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Intl J Pharmaceutics. 2010;387(1-2):187-98. [DOI:10.1016/j.ijpharm.2009.11.033]
13. Gomez AG, Hosseinidoust Z. Liposomes for antibiotic encapsulation and delivery. ACS Infect Dis. 2020;6(5):896-908. [DOI:10.1021/acsinfecdis.9b00357]
14. Ghosh R, De M. Liposome-based antibacterial delivery: An emergent approach to combat bacterial infections. ACS Omega. 2023;8(39):35442-51. [DOI:10.1021/acsomega.3c04893]
15. Mlipour M, Suntres ZE. Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Ther Deliv. 2014;5(4):409-27. [DOI:10.4155/tde.14.13]
16. Fattal E, Rojas J, Youssef M, Couvreur P, Andremont A. Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis. Antimicrob Agents Chemother. 1991;35(4):770-2. [DOI:10.1128/AAC.35.4.770]
17. Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res. 2016:107:57-65. [DOI:10.1016/j.phrs.2016.03.002]
18. Song N, Zhang J, Zhai J, Hong J, Yuan C, Liang M. Ferritin: A multifunctional nanoplatform for biological detection,imaging diagnosis, and drug delivery. Acc Chem Res. 2021;54(17):3313-25. [DOI:10.1021/acs.accounts.1c00267]
19. Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, et al. H-Ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci USA. 2014;111(41):14900-5. [DOI:10.1073/pnas.1407808111]
20. Zhao Y, Liang M, Li X, Fan K, Xiao J, Li Y, et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano. 2016;10(4):4184-91. [DOI:10.1021/acsnano.5b07408]
21. Thomas D, Kumar A, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer. 2021;1875(1):188464. [DOI:10.1016/j.bbcan.2020.188464]
22. Gurav MJ, Manasa J, Sanji AS, Megalamani PH, Chachadi VB. Lectin-glycan interactions: A comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: A review. Glycoconj J. 2024;41(4-5): 301-22. [DOI:10.1007/s10719-024-10161-y]
23. Wang C, Ho PC, Lim LY. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. Int J Pharm. 2010;400(1-2):201-10. [DOI:10.1016/j.ijpharm.2010.08.023]
24. Mo Y, Lim L-Y. Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release. 2005;107(1):30-42. [DOI:10.1016/j.jconrel.2004.06.024]
25. Ferreira M, Ogren M, Dias JNR, Silva M, Gil S, Tavares L, et al. Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules. 2021;26(7):2047. [DOI:10.3390/molecules26072047]
26. Mukherjee MB, Mullick R, Reddy BU, Das S, Raichur AM. Galactose functionalized mesoporous silica nanoparticles as delivery vehicle in the treatment of hepatitis C infection. ACS Appl Bio Mater. 2020;3(11):7598-610. [DOI:10.1021/acsabm.0c00814]
27. Mudakavi RJ, Raichur AM, Chakravortty D. Lipid coated mesoporous silica nanoparticle as oral delivery system for targeting and treatment of intravacuolar Salmonella infection. RSC Advances. 2014;4(105):61160-6. [DOI:10.1039/C4RA12973C]
28. Gasparyan VK, Bazukyan IL. Lectin sensitized anisotropic silver nanoparticles for determination of some bacteria. Anal Chim Acta. 2013:766:83-7. [DOI:10.1016/j.aca.2012.12.015]
29. Mikaelyan MV, Poghosyan G, Hendrickson OD, Dzantiev BB, Gasparyan VK. Wheat germ agglutinin and Lens culinaris agglutinin sensitized anisotropic silver nanoparticles in detection of bacteria: A simple photometric assay. Anal Chim Acta. 2017:981:80-5. [DOI:10.1016/j.aca.2017.05.022]
30. Gyurjyan QG, Mikaelyan MV, Poghosyan G, Hovhannisyan VA, Gasparyan VK. Detection of Saccharomyces cerevisiae by silver nanoparticles sensitized with various lectins. Analytical Methods. 2020;12(27):3508-12. [DOI:10.1039/D0AY00614A]
31. Smith JW, de Grey GE, Patel VJ. The spectrophotometric determination of ampicillin. Analyst. 1967;92(93):247-52. [DOI:10.1039/an9679200247]
32. Versalovic J, Carroll KC, Funke G, Jorgensen JJ, Landry ML, Warnock DW. Manual of clinical microbiology. 10th ed. American Society for Microbiology Press: Washington DC; 2022.
33. Urban T, Jarstrand C. Nitroblue tetrazolium (NBT) reduction by bacteria. Acta Pathol Microbiol Scand B. 2009;87(1-6):227-33. [DOI:10.1111/j.1699-0463.1979.tb02431.x]
34. Sanderson CJ, Wilson DV. A simple method for coupling proteins to insoluble polysaccharides. Immunology. 1971;20(6):1061-5.
35. Davey H, Guyot S. Estimation of microbial viability using flow cytometry. Curr Protoc Cytom. 2020;93(1):72. [DOI:10.1002/cpcy.72]
36. Zhu Y, Huang WE, Yang Q. Clinical perspective of antimicrobial resistance in bacteria. Infec Drug Resist. 2022:15:735-46. [DOI:10.2147/IDR.S345574]
37. Abo-Neima SE, Motaweh HA, Elsehly EM. Antimicrobial activity of functionalised carbon nanotubes against pathogenic microorganisms. IET Nanobiotechnol. 2020;14(6):457-64. [DOI:10.1049/iet-nbt.2019.0342]
38. Jiang L, Su C, Ye S, Wu J, Zhu Z, Wen Y, et al. Synergistic antibacterial effect of tetracycline hydrochloride loaded functionalized graphene oxide nanostructures. Nanotechnology. 2018;29(50):505102. [DOI:10.1088/1361-6528/aae424]
39. Lee H, Arnoult C, Dé E, Schapman,D, Galas L, Le Cerf D, Karakasyan C. Antibody-conjugated nanocarriers for targeted antibiotic delivery: Application in the treatment of bacterial biofilms. Biomacromolecules. 2021;22(4):1639-53. [DOI:10.1021/acs.biomac.1c00082]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb