1. Bloom DE, Black S, Salisbury D, Rappuoli R. Antimicrobial resistance and the role of vaccines. Proc Natl Acad Sci USA. 2018;115(51):12868-71. [
DOI:10.1073/pnas.1717157115]
2. Larsson J , Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol;20(5):1-13. [
DOI:10.1038/s41579-021-00649-x]
3. Ascenzi P, Fanali G, Fasano M, Pallottini V, Trezza V. Clinical relevance of drug binding to plasma proteins. J Mol Struct. 2014;1077(1):4-13. [
DOI:10.1016/j.molstruc.2013.09.053]
4. Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018:1705328. [
DOI:10.1002/adma.201705328]
5. Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, et al. Drug delivery systems programmed and on-demand release. Adv Drug Deliv Rev. 2018;132,104-38. [
DOI:10.1016/j.addr.2018.07.002]
6. Kim D, Whang CH, Hong J, Prayogo MC, Jung W, Lee S, et al. Glycocalyx-mimicking nanoparticles with differential organ selectivity for drug delivery and therapy. Adv Mater. 2024;36(27):2311283. [
DOI:10.1002/adma.202311283]
7. Aguilera-Correa JJ, Gisbert-Garzarán M, Mediero A, Fernández-Aceñero MJ, de-Pablo-Velasco D, Lozano D, et al. Antibiotic delivery from bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis caused by methicillin-resistant Staphylococcus aureus. Acta Biomater. 2022, 154:608-25. [
DOI:10.1016/j.actbio.2022.10.039]
8. Han H, Santos HA. Nano- and micro-platforms in therapeutic proteins delivery for cancer therapy: Materials and strategies. Adv Mater. 2024;36(45):2409522. [
DOI:10.1002/adma.202409522]
9. Tian Y, Gao Z, Wang N, Hu M, Ju Y, Li Q, et al. Engineering poly(ethylene glycol) nanoparticles for accelerated blood clearance inhibition and targeted drug delivery. J Am Chem Soc. 2022;144(40):18419-28. [
DOI:10.1021/jacs.2c06877]
10. Raj S, Khurana S, Choudhari R, Kumar K, Кamal,MA, Garg N, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol.2021;69:166-77. [
DOI:10.1016/j.semcancer.2019.11.002]
11. Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372. [
DOI:10.3390/molecules27041372]
12. Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Intl J Pharmaceutics. 2010;387(1-2):187-98. [
DOI:10.1016/j.ijpharm.2009.11.033]
13. Gomez AG, Hosseinidoust Z. Liposomes for antibiotic encapsulation and delivery. ACS Infect Dis. 2020;6(5):896-908. [
DOI:10.1021/acsinfecdis.9b00357]
14. Ghosh R, De M. Liposome-based antibacterial delivery: An emergent approach to combat bacterial infections. ACS Omega. 2023;8(39):35442-51. [
DOI:10.1021/acsomega.3c04893]
15. Mlipour M, Suntres ZE. Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Ther Deliv. 2014;5(4):409-27. [
DOI:10.4155/tde.14.13]
16. Fattal E, Rojas J, Youssef M, Couvreur P, Andremont A. Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis. Antimicrob Agents Chemother. 1991;35(4):770-2. [
DOI:10.1128/AAC.35.4.770]
17. Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res. 2016:107:57-65. [
DOI:10.1016/j.phrs.2016.03.002]
18. Song N, Zhang J, Zhai J, Hong J, Yuan C, Liang M. Ferritin: A multifunctional nanoplatform for biological detection,imaging diagnosis, and drug delivery. Acc Chem Res. 2021;54(17):3313-25. [
DOI:10.1021/acs.accounts.1c00267]
19. Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, et al. H-Ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci USA. 2014;111(41):14900-5. [
DOI:10.1073/pnas.1407808111]
20. Zhao Y, Liang M, Li X, Fan K, Xiao J, Li Y, et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano. 2016;10(4):4184-91. [
DOI:10.1021/acsnano.5b07408]
21. Thomas D, Kumar A, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer. 2021;1875(1):188464. [
DOI:10.1016/j.bbcan.2020.188464]
22. Gurav MJ, Manasa J, Sanji AS, Megalamani PH, Chachadi VB. Lectin-glycan interactions: A comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: A review. Glycoconj J. 2024;41(4-5): 301-22. [
DOI:10.1007/s10719-024-10161-y]
23. Wang C, Ho PC, Lim LY. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. Int J Pharm. 2010;400(1-2):201-10. [
DOI:10.1016/j.ijpharm.2010.08.023]
24. Mo Y, Lim L-Y. Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release. 2005;107(1):30-42. [
DOI:10.1016/j.jconrel.2004.06.024]
25. Ferreira M, Ogren M, Dias JNR, Silva M, Gil S, Tavares L, et al. Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules. 2021;26(7):2047. [
DOI:10.3390/molecules26072047]
26. Mukherjee MB, Mullick R, Reddy BU, Das S, Raichur AM. Galactose functionalized mesoporous silica nanoparticles as delivery vehicle in the treatment of hepatitis C infection. ACS Appl Bio Mater. 2020;3(11):7598-610. [
DOI:10.1021/acsabm.0c00814]
27. Mudakavi RJ, Raichur AM, Chakravortty D. Lipid coated mesoporous silica nanoparticle as oral delivery system for targeting and treatment of intravacuolar Salmonella infection. RSC Advances. 2014;4(105):61160-6. [
DOI:10.1039/C4RA12973C]
28. Gasparyan VK, Bazukyan IL. Lectin sensitized anisotropic silver nanoparticles for determination of some bacteria. Anal Chim Acta. 2013:766:83-7. [
DOI:10.1016/j.aca.2012.12.015]
29. Mikaelyan MV, Poghosyan G, Hendrickson OD, Dzantiev BB, Gasparyan VK. Wheat germ agglutinin and Lens culinaris agglutinin sensitized anisotropic silver nanoparticles in detection of bacteria: A simple photometric assay. Anal Chim Acta. 2017:981:80-5. [
DOI:10.1016/j.aca.2017.05.022]
30. Gyurjyan QG, Mikaelyan MV, Poghosyan G, Hovhannisyan VA, Gasparyan VK. Detection of Saccharomyces cerevisiae by silver nanoparticles sensitized with various lectins. Analytical Methods. 2020;12(27):3508-12. [
DOI:10.1039/D0AY00614A]
31. Smith JW, de Grey GE, Patel VJ. The spectrophotometric determination of ampicillin. Analyst. 1967;92(93):247-52. [
DOI:10.1039/an9679200247]
32. Versalovic J, Carroll KC, Funke G, Jorgensen JJ, Landry ML, Warnock DW. Manual of clinical microbiology. 10th ed. American Society for Microbiology Press: Washington DC; 2022.
33. Urban T, Jarstrand C. Nitroblue tetrazolium (NBT) reduction by bacteria. Acta Pathol Microbiol Scand B. 2009;87(1-6):227-33. [
DOI:10.1111/j.1699-0463.1979.tb02431.x]
34. Sanderson CJ, Wilson DV. A simple method for coupling proteins to insoluble polysaccharides. Immunology. 1971;20(6):1061-5.
35. Davey H, Guyot S. Estimation of microbial viability using flow cytometry. Curr Protoc Cytom. 2020;93(1):72. [
DOI:10.1002/cpcy.72]
36. Zhu Y, Huang WE, Yang Q. Clinical perspective of antimicrobial resistance in bacteria. Infec Drug Resist. 2022:15:735-46. [
DOI:10.2147/IDR.S345574]
37. Abo-Neima SE, Motaweh HA, Elsehly EM. Antimicrobial activity of functionalised carbon nanotubes against pathogenic microorganisms. IET Nanobiotechnol. 2020;14(6):457-64. [
DOI:10.1049/iet-nbt.2019.0342]
38. Jiang L, Su C, Ye S, Wu J, Zhu Z, Wen Y, et al. Synergistic antibacterial effect of tetracycline hydrochloride loaded functionalized graphene oxide nanostructures. Nanotechnology. 2018;29(50):505102. [
DOI:10.1088/1361-6528/aae424]
39. Lee H, Arnoult C, Dé E, Schapman,D, Galas L, Le Cerf D, Karakasyan C. Antibody-conjugated nanocarriers for targeted antibiotic delivery: Application in the treatment of bacterial biofilms. Biomacromolecules. 2021;22(4):1639-53. [
DOI:10.1021/acs.biomac.1c00082]