Volume 26, Issue 3 (5-2022)                   IBJ 2022, 26(3): 219-229 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golabi S, Adelipour M, Mohammadi A, Omidian K, Rastqar A, Naghashpour M. A Green Approach for the Biosynthesis of Gold Nanoparticles Using Cuminum cyminum L. Seed and Its Application for Pain Management in Rats. IBJ 2022; 26 (3) :219-229
URL: http://ibj.pasteur.ac.ir/article-1-3539-en.html
Background: This study investigated the antinociceptive effect of cumin and its biosynthesized gold nanoparticles (AuNPs).
Methods: Cumin extract (E) and cumin-AuNPs (GN) were prepared and administered intraperitoneally at the concentrations of 200, 500, and 1000 mg/ml to 27 male rats. Ultraviolet-visible spectroscopy and atomic force microscopy were applied for AuNPs synthesis confirmation. The nociceptive behavior was assessed, and IL-6 serum levels were measured.
Results: Cumin-AuNPs showed a peak absorption of 515 nm, and a size of about 40 nm. Three different concentrations of extract had no significant effect on acute and chronic nociceptive behavior. GN + E200 (46.00 ± 10.59) showed a significant acute anti-nociceptive effect compared to the control (98.66 ± 4.91; p = 0.029) and SS300 (98.33 ± 20.30; p = 0.029) groups. Also, GN + E500 (42.00 ± 11.84) significantly reduced acute nociceptive behavior compared to the control (98.66 ± 4.91; p = 0.019), SS300 (98.33 ± 20.30; p = 0.020), and GN + E1000 (91.00 ± 26.00; p = 0.040) groups. IL-6 serum levels reduced significantly in GN + E500 (24.65 ± 10.38; p = 0.002) and SS300 (33.08 ± 1.68; p = 0.039) compared to the controls (46.24 ± 3.02). Chronic nociceptive behavior was significantly lower in the SS300 (255.33 ± 26.30) compared to E200 (477.00 ± 47.29; p = 0.021), E500 (496.25 ± 46.29; p = 0.013), and GN + E500 (437.00 ± 118.03; p = 0.032) groups.
Conclusion: Our findings suggest the potential effects of cumin-AuNPs on formalin-induced nociceptive behavior, which is independent of IL-6serum levels.
Type of Study: Full Length | Subject: Pharmaceutical Biotechnology

1. Borsook D. Neurological diseases and pain. Brain 2012; 135(Pt 2): 320-344. [DOI:10.1093/brain/awr271]
2. Sommer C, Leinders M, Uceyler N. Inflammation in the pathophysiology of neuropathic pain. Pain 2018; 159(3): 595-602. [DOI:10.1097/j.pain.0000000000001122]
3. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. The journal of pain 2013; 14(11): 1255-1269. [DOI:10.1016/j.jpain.2013.06.008]
4. Yoon MH, Bae HB, Choi JI. Antinociception of intrathecal adenosine receptor subtype agonists in rat formalin test. Anesthesia and analgesia 2005; 101(5): 1417-1421. [DOI:10.1213/01.ANE.0000180994.10087.6F]
5. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992; 51(1): 5-17. [DOI:10.1016/0304-3959(92)90003-T]
6. Zhang L, Yin JB, Hu W, Zhao WJ, Fan QR, Qiu ZC, He MJ, Ding T, Sun Y, Kaye AD, Wang ER. Analgesic effects of duloxetine on formalin-induced hyper-algesia and its underlying mechanisms in the CeA. Frontiers in pharmacology 2018; 9: 317. [DOI:10.3389/fphar.2018.00317]
7. Kumar S BB, Kuldeep S, Kalia AN. Anti-inflammatory activity of herbal plants: A review. International journal of advances in pharmacy, biology and chemistry 2013; 2(2): 272-281
8. Xu XM, Sansores-Garcia L, Chen XM, Matijevic-Aleksic N, Du M, Wu KK. Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate. Proceedings of the national academy of sciences of the United States of America 1999; 96(9): 5292-5297. [DOI:10.1073/pnas.96.9.5292]
9. AE AS. The chemical constituents and pharmacological importance of celosia cristata-a review. The botulinum journal 2015; 5(4): 254-261.
10. AE A-S. The pharmacological activities of Cuminum cyminum- A review. IOSR Journal of pharmacy 2016; 6(2): 46-65.
11. Hanif C AT, Adila S, Saeed M, Tanveer A, Ashfaq M. . Physico-chemical investigation and antimicrobial activity of essential oil of Cuminum cyminum L. World applied sciences journal 2012; 19(3): 330-333.
12. Geraldes AN dSA, Leal J, Mayeli Estrada-Villegas G, Lincopan N, Katti KV, Lugão AB. Green nanotechnology from plant extracts: synthesis and characterization of gold nanoparticles Advances in Nanoparticles. Advances in nanoparticles 2016; 5: 176-185. [DOI:10.4236/anp.2016.53019]
13. Katti K, Chanda N, Shukla R, Zambre A, Suibramanian T, Kulkarni RR, Kannan R, Katti KV. Green nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. International journal of green nanotechnology. Biomedicine 2009; 1(1): B39-B52. [DOI:10.1080/19430850902931599]
14. Selvaraj Raja VR, Varadavenkatesan Thivaharan. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian journal of cemistry 2017; 10(2): 253-261. [DOI:10.1016/j.arabjc.2015.06.023]
15. Harikumar SL, Nirmala N. Nanoparticles: An overview. Journal of drug delivery and therapeutics 2013; 3(2): 169-175. [DOI:10.22270/jddt.v3i2.407]
16. Bruchez M MM, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281: 2013-1016. [DOI:10.1126/science.281.5385.2013]
17. Wang S MN, Kotov NA, Chen W, Studer J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano letters 2002; 2: 817-822 [DOI:10.1021/nl0255193]
18. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281(5385): 2016-2018. [DOI:10.1126/science.281.5385.2016]
19. Mah C ZI, Fraites TJ, Dobson J, Batich C, Byrne BJ. Microsphere- mediated delivery of recombinant AAV vectors in vitro and in vivo. Molecular therapy 2000; 1: S239
20. Panatarotto D PC, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A. Immunization with peptide-functionalized carbon nanotubes enhance virus-specific neutralizing antibody responses. Chemistry and biology 2003; 10: 961-966. [DOI:10.1016/j.chembiol.2003.09.011]
21. Edelstein RL, Tamanaha CR, Sheehan PE, Miller MM, Baselt DR, Whitman LJ, Colton RJ. The BARC biosensor applied to the detection of biological warfare agents. Biosens bioelectron 2000; 14(10-11): 805-813. [DOI:10.1016/S0956-5663(99)00054-8]
22. Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003; 301(5641): 1884-1886. [DOI:10.1126/science.1088755]
23. Moldovan B DL, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, Baldea I, Clichici S, Filip GA. In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Materials science and engineering. C, materials for biological applications 2017; 1(79): 720-727. [DOI:10.1016/j.msec.2017.05.122]
24. Khoobchandani M, Katti KK, Karikachery AR, Thipe VC, Srisrimal D, Dhurvas Mohandoss DK, Darshakumar RD, Joshi CM, Katti KV. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine-pre-clinical and pilot human clinical investigations. International journal of nanomedicine 2020; 15: 181-197. [DOI:10.2147/IJN.S219042]
25. Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert opinion on drug delivery 2010; 7(6): 753-763. [DOI:10.1517/17425241003777010]
26. Singh RP GH, Mruthunjaya K. Cuminum cyminum- A popular spice: An Updated Review. Pharmacognosy journal 2017; 9(3): 292-301. [DOI:10.5530/pj.2017.3.51]
27. Xie ZM, Wang XM, Xu N, Wang J, Pan W, Tang XH, Zhou ZQ, Hashimoto K, Yang JJ. Alterations in the inflammatory cytokines and brain-derived neurotrophic factor contribute to depression-like phenotype after spared nerve injury: improvement by ketamine. Scientific reports 2017; 7(1): 3124. [DOI:10.1038/s41598-017-03590-3]
28. Edwards RR, Kronfli T, Haythornthwaite JA, Smith MT, McGuire L, Page GG. Association of catastrophizing with interleukin-6 responses to acute pain. Pain 2008; 140(1): 135-144. [DOI:10.1016/j.pain.2008.07.024]
29. Chamkouri N, Naghashpour M, Adelipour M, Mohammadi A, Seyedsadjadi N, Oliveira B, Golabi S. Cuminum cyminum L.-mediated synthesis of silver nanoparticles: Their characterization and effect on formalin-induced nociceptive response in male rats. Biological trace element research 2021; 199(11): 4171-4182. [DOI:10.1007/s12011-020-02530-z]
30. Wu PC, Shieh DB, Hsiao HT, Wang JC, Lin YC, Liu YC. Magnetic field distribution modulation of intrathecal delivered ketorolac iron-oxide nanoparticle conjugates produce excellent analgesia for chronic inflammatory pain. Journal of nanobiotechnology 2018; 16(1): 49. [DOI:10.1186/s12951-018-0375-9]
31. Bahamonde J, Brenseke B, Chan MY, Kent RD, Vikesland PJ, Prater MR. Gold nanoparticle toxicity in mice and rats: species differences. Toxicologic pathology 2018; 46(4): 431-443. [DOI:10.1177/0192623318770608]
32. Golabi S, Hasanpour Ezati M, Azhdari H, Rohampour K, Radjabian T, Ekhteraie Tousi S. Anti-nociceptive activity of regenerated Drosera spatulata aqueous extract by rat formalin test. Journal medicinal plants 2010; 33(33): 35-40.
33. Shariat HS. Qualitative and quantitative evaluation of the active constituents and control methods for medicinal plants. Isfahan: Mani Publication; 1992.
34. Golabi S MA, Chamkouri N. Investigation of anti-inflammatory effect of aqueous extract of Cuminum cyminum L. by formalin inflammatory model in male rats. Journal of Medicinal Plants 2019; 18 (4): 236-247. [DOI:10.29252/jmp.4.72.S12.236]
35. Al-Shawi SG, Al-Younis ZK, Al-Kareem NF. Study of cumin antibacterial and antioxidant activity of alcoholic and aqueous extracts. Pakistan journal of biotechnology 2017; 14(2): 227 -231.
36. Sneha K, Sathishkumar M, Lee SY, Bae MA, Yun YS. Biosynthesis of Au nanoparticles using cumin seed powder extract. Journal of nanoscience and nanotechnology 2011; 11(2): 1811-1814. [DOI:10.1166/jnn.2011.3414]
37. Pandey S, Patel MK, Mishra A, Jha B. Physio-Biochemical composition and untargeted metabolomics of Cumin (Cuminum cyminum L.) make it promising functional food and help in mitigating salinity stress. PloS one 2015; 10(12): e0144469. [DOI:10.1371/journal.pone.0144469]
38. Miguel MG. Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 2010; 15(12): 9252-9287. [DOI:10.3390/molecules15129252]
39. Ahn S, Singh P, Castro-Aceituno V, Yesmin Simu S, Kim YJ, Mathiyalagan R, Yang DC. Gold nanoparticles synthesized using Panax ginseng leaves suppress inflammatory-mediators production via blockade of NF-kappaB activation in macrophages. Artificial cells, nanomedicine, and biotechnology 2017; 45(2): 270-276. [DOI:10.1080/21691401.2016.1228661]
40. Naz F, Koul V, Srivastava A, Gupta YK, Dinda AK. Biokinetics of ultrafine gold nanoparticles (AuNPs) relating to redistribution and urinary excretion: a long-term in vivo study. Journal of drug targeting 2016; 24(8): 720-729 . [DOI:10.3109/1061186X.2016.1144758]
41. Agarwal H, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomedicine and pharmacotherapy 2019; 109: 2561-2572. [DOI:10.1016/j.biopha.2018.11.116]
42. Taherian AA EH, Sadeghi H. Assessment of Aqueous Extract of seed of Cuminum cyminum L. on neurogenic and inflammatory pain in mice. Journal of medicinal plants 2007; 4(24): 44-50.
43. Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, Chen S, Irvine DJ, Stellacci F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature materials 2008; 7(7): 588-595. [DOI:10.1038/nmat2202]
44. Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chemical society reviews 2011; 40(1): 233-245. [DOI:10.1039/C0CS00003E]
45. Nirmala MJ, Durai L, Rao KA, Nagarajan R. Ultrasonic nanoemulsification of Cuminum cyminum essential oil and its applications in medicine. International journal of nanomedicine 2020; 15: 795-807. [DOI:10.2147/IJN.S230893]
46. Thipe VC, Panjtan Amiri K, Bloebaum P, Raphael Karikachery A, Khoobchandani M, Katti KK, Jurisson SS, Katti KV. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. International journal of nanomedicine 2019; 14: 4413-4428. [DOI:10.2147/IJN.S204443]
47. Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V, Jon S, Langer RS, Farokhzad OC. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2007; 2(9): 1268-1271. [DOI:10.1002/cmdc.200700121]
48. Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Frontiers in bioscience 1997; 2: d12-d26. [DOI:10.2741/A171]
49. Yasaman Husseini HS, Gholam Hossein Meftahi, M. Dargahia, Alireza Mohammadi, Boshra Hatef, Homeira Zardooz, Mina Ranjbaran, Seydeh Bentolhuda Hosseini, Hengameh Alibeig, M. Behzadnia, A. Majd, Zahra Bahari,, Hassan Ghoshooni CJ, L. Golmanesh. Analgesic and anti-inflammatory activities of hydro-alcoholic extract of Lavandula officinalis in mice: possible involvement of the cyclooxygenase type 1 and 2 enzymes. Brazilian journal of pharmacognosy 2015; 26: 102-108. [DOI:10.1016/j.bjp.2015.10.003]
50. Al-Snafi. AE. Arabian medicinal plants with antiinflammatory effects- plant based review (part 1). IOSR journal of pharmacy 2018; 8(7): 55-100.
51. Bhat SP RW, Kumar Anil. Efect of cuminum cyminum L. Seed extracts on pain and inflammation. Journal of natural remedies 2014; 14(2): 186-192.
52. Sayah M PA, Kamalinezhad M. Anti-nociceptive effect of the fruit essential oil of cuminum cyminum L. in rat. Iranian biomedical journal 2002; 6 (4): 141-145.
53. Gias ZT, Afsana F, Debnath P, Alam MS, Ena TN, Hossain MH, Jain P, Reza HM. A mechanistic approach to HPLC analysis, antinociceptive, anti-inflammatory and postoperative analgesic activities of panch phoron in mice. BMC complementary medicine and therapies 2020; 20(1): 102. [DOI:10.1186/s12906-020-02891-x]
54. Doak GJ, Sawynok J. Formalin-induced nociceptive behavior and edema: involvement of multiple peripheral 5-hydroxytryptamine receptor subtypes. Neuroscience 1997; 80(3): 939-949. [DOI:10.1016/S0306-4522(97)00066-3]
55. Shibata M, Ohkubo T, Takahashi H, Inoki R. Modified formalin test: characteristic biphasic pain response. Pain 1989; 38(3): 347-352. [DOI:10.1016/0304-3959(89)90222-4]
56. Chapman V, Dickenson AH. The spinal and peripheral roles of bradykinin and prostaglandins in nociceptive processing in the rat. European journal of pharmacology 1992; 219(3): 427-433. [DOI:10.1016/0014-2999(92)90484-L]
57. Malmberg AB, Yaksh TL. Cyclooxygenase inhibition and the spinal release of prostaglandin E2 and amino acids evoked by paw formalin injection: a microdialysis study in unanesthetized rats. The journal of neuroscience 1995; 15(4): 2768-2776. [DOI:10.1523/JNEUROSCI.15-04-02768.1995]
58. Srivastava KC. Extracts from two frequently consumed spices--cumin (Cuminum cyminum) and turmeric (Curcuma longa)-inhibit platelet aggregation and alter eicosanoid biosynthesis in human blood platelets. Prostaglandins, leukotrienes, and essential fatty acids 1989; 37(1): 57-64. [DOI:10.1016/0952-3278(89)90187-7]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb