Volume 27, Issue 5 (9-2023)                   IBJ 2023, 27(5): 320-325 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajhosseini A, Sharifan A, Eftekhari Z, Alavi A, Doroud D. Optimal Extraction and Deproteinization Method for Mannoprotein Purification from Kluyveromyces marxianus. IBJ 2023; 27 (5) :320-325
URL: http://ibj.pasteur.ac.ir/article-1-3200-en.html
Abstract:  
Background: Mannoproteins, mannose-glycosylated proteins, play an important role in biological processes and have various applications in industries. Several methods have been already used for the extraction of mannoproteins from yeast cell-wall. The aim of this study was to evaluate the extraction and deproteinization of mannan oligosaccharide from the Kluyveromyces (K.) marxianus mannoprotein.
Methods: To acquire crude mannan oligosaccharides, K. marxianus mannoproteins were deproteinized by the Sevage, trichloroacetic acid, and hydrochloric acid (HCL) methods. Total nitrogen, crude protein content, fat, carbohydrate and ash content were measured according to the monograph prepared by the meeting of the Joint FAO/WHO Expert Committee and standard. Mannan oligosaccharide loss, percentage of deproteinization, and chemical composition of the product were assessed to check the proficiency of different methods.
Results: Highly purified (95.4%) mannan oligosaccharide with the highest deproteinization (97.33 ± 0.4%) and mannan oligosaccharide loss (25.1 ± 0.6%) were obtained following HCl method.
Conclusion: HCl, was the most appropriate deproteinization method for the removal of impurities. This preliminary data will support future studies to design scale-up procedures.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Quirós M, Gonzalez R, Morales P. A simple method for total quantification of mannoprotein content in real wine samples. Food chemistry 2012; 134(2): 1205-1210. [DOI:10.1016/j.foodchem.2012.02.168]
2. Caridi A. Enological functions of parietal yeast mannoproteins. Antonie van leeuwenhoek 2006; 89(3-4): 417-422. [DOI:10.1007/s10482-005-9050-x]
3. de Melo ANF, de Souza EL, da Silva Araujo VB, Magnani M. Stability, nutritional and sensory characteristics of French salad dressing made with mannoprotein from spent brewer's yeast. LWT-Food science and technology 2015; 62(1): 771-774. [DOI:10.1016/j.lwt.2014.06.050]
4. da Silva Araújo VB, de Melo ANF, Costa AG, Castro-Gomez RH, Madruga MS, de Souza EL, Magnani M. Followed extraction of β-glucan and mannoprotein from spent brewer's yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innovative food science and emerging technologies 2014; 23: 164-170. [DOI:10.1016/j.ifset.2013.12.013]
5. Benyacoub J, Maulden GLC, Cavadini C, Sauthier T, Anderson RE, Schiffrin EJ, Weid TVD. Supplementation of food with Enterococcis faecium (SF68) stimulates immune functions in young dogs. Journal of nutrition 2003; 133(4): 1158-1162 [DOI:10.1093/jn/133.4.1158]
6. Ganan M, Carrascosa AV, de Pascual Teresa S, Martinez Rodriguez AJ. Effect of mannoproteins on the growth, gastrointestinal viability, and adherence to Caco‐2 cells of lactic acid bacteria. Journal of food science 2012; 77(3): M176-M180. [DOI:10.1111/j.1750-3841.2011.02602.x]
7. Hosseini M, Sharifan A. Biological properties of yeast-based mannoprotein for prospective biomedical applications. Combinatorial chemistry and high throughput screen 2021; 24(6): 831-840. [DOI:10.2174/1386207323999200818162030]
8. Roohvand F, Shokri M, Abdollahpour-Alitappeh M, Ehsani P. Biomedical applications of yeast-a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines. Expert opinion on therapeutic patents 2017; 27(8): 929-951. [DOI:10.1080/13543776.2017.1339789]
9. Darpossolo FPB, Eto SF, Venancio EJ, Castro Goméz RJH. Saccharomyces uvarum mannoproteins stimulate a humoral immune response in mice. Brazilian archives of biology and technology 2012; 55(4): 597-602. [DOI:10.1590/S1516-89132012000400016]
10. Ganan M, Carrascosa AV, de Pascual Teresa S, Martínez Rodríguez AJ. Inhibition by yeast-derived mannoproteins of adherence to and invasion of Caco-2 cells by Campylobacter jejuni. Journal of food protection 2009; 72(1): 55-59. [DOI:10.4315/0362-028X-72.1.55]
11. Li J, Karboune S. A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall. International journal of biological macromolecules 2018; 119: 654-661. [DOI:10.1016/j.ijbiomac.2018.07.102]
12. Razeghi Mansour M, Akrami R, Ghobadi SH, Amani Denji K, Ezatrahimi N, Gharaei A. Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Fish physiology and biochemistry 2012; 38(3): 829-835. [DOI:10.1007/s10695-011-9570-4]
13. Dimitroglou A, Merrifield DL, Spring P, Sweetman J, Moate R, Davies SJ. Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture 2010; 300(1-4): 182-188. [DOI:10.1016/j.aquaculture.2010.01.015]
14. Hoving LR, van der Zande HJP, Pronk A, Guigas B, Willems van Dijk K, van Harmelen V. Dietary yeast-derived mannan oligosaccharides have immune-modulatory properties but do not improve high fat diet-induced obesity and glucose intolerance. Plos one 2018; 13(5): e0196165. [DOI:10.1371/journal.pone.0196165]
15. Lew DB, LeMessurier KS, Palipane M, Lin Y, Samarasinghe AE. Saccharomyces cerevisiae-Derived Mannan Does Not Alter Immune Responses to Aspergillus Allergens. Biomedical research international 2018; 2018: 3298378. [DOI:10.1155/2018/3298378]
16. Baert K, De Geest BG, De Greve H, Cox E, Devriendt B. Duality of β-glucan microparticles: antigen carrier and immunostimulants. International journal of nanomedicine 2016; 11: 2463-2469. [DOI:10.2147/IJN.S101881]
17. Zhou M, Tao Y, Lai C, Huang C, Zhou Y, Yong Q. Effects of mannanoligosaccharide supplementation on the growth performance, immunity, and oxidative status of partridge shank chickens. Animals (Basel) 2019; 9(10): 817. [DOI:10.3390/ani9100817]
18. Fonseca GG, Heinzle E, Wittmann C, Gombert AK. The yeast Kluyveromyces marxianus and its biotechnological potential. Applied microbiology and biotechnology 2008; 79(3): 339-354. [DOI:10.1007/s00253-008-1458-6]
19. Lane MM, Morrissey JP. Kluyveromyces marxianus: a yeast emerging from its sister's shadow. Fungal biology reviews 2010; 24(1-2): 17-26. [DOI:10.1016/j.fbr.2010.01.001]
20. Aktaş N, Boyacı İH, Mutlu M, Tanyolaç A. Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM). Bioresource technology 2006; 97(18): 2252-2259. [DOI:10.1016/j.biortech.2005.10.039]
21. Eluk D, Ceruti R, Nagel O, Althaus R. Effect of thermal treatment of whey contaminated with antibiotics on the growth of Kluyveromyces marxianus. Journal of dairy research 2019; 86(1): 102-107. [DOI:10.1017/S0022029919000098]
22. Hajhosseini A, Doroud D, Sharifan A, Eftekhari Z. Optimizing growth conditions of Kluyveromyces marxianus for mannan production as a bioemulsifier. Applied food biotechnology 2020; 7(2): 115-126.
23. Hanneh VA, Ali MS, Elnaz M, Arash K, Masoome M. Statistical optimization of culture media and conditions for maximize production of mannan by saccharomyces cerevisiae using response surface methodology. Annual research and review in biology 2014; 4(12): 1927-1940. [DOI:10.9734/ARRB/2014/8712]
24. Liu HZ, Wang Q, Liu YY, Fang F. Statistical optimization of culture media and conditions for production of mannan by Saccharomyces cerevisiae. Biotechnology and bioprocess engineering 2009; 14: 577-583. [DOI:10.1007/s12257-008-0248-4]
25. Dikit P, Maneerat S, H‐kittikun A. Mannoprotein from spent yeast obtained from thai traditional liquor distillation: extraction and characterization. Journal of food process engineering 2012; 35(1): 166-177. [DOI:10.1111/j.1745-4530.2010.00592.x]
26. Galinari É, Sabry DA, Sassaki GL, Macedo GR, Passos FML, Mantovani HC, Rocha HAO. Chemical structure, antiproliferative and antioxidant activities of a cell wall α-d-mannan from yeast Kluyveromyces marxianus. Carbohydrate polymers 2017; 157: 1298-1305. [DOI:10.1016/j.carbpol.2016.11.015]
27. Huang G, Yang Q, Wang ZB. Extraction and deproteinization of mannan oligosaccharides. Zeitschrift für naturforschung C journal of biosciences 2010; 65(5-6): 387-390. [DOI:10.1515/znc-2010-5-611]
28. Liu HZ, Liu L, Hui H, Wang Q. Structural characterization and antineoplastic activity of Saccharomyces cerevisiae mannoprotein. International journal of food properties 2015; 18(2): 359-371. [DOI:10.1080/10942912.2013.819364]
29. Waterborg JH, Matthews HR. The Lowry method for protein quantification. Methods in molecular biology 1994; 32: 1-4. [DOI:10.1385/0-89603-062-8:1]
30. Kavanagh F. Official Methods of Analysis of the AOAC. 13th ed. Journal of pharmaceutical sciences 1981; 70(4): 468. https://doi.org/10.1002/jps.2600700437 [DOI:10.1002/jps.2600700437.]
31. Liu XY, Wang Q, Cui SW, Liu HZ. A new isolation method of β-D-glucans from spent yeast Saccharomyces cerevisiae. Food hydrocolloids 2008; 22(2): 239-247. [DOI:10.1016/j.foodhyd.2006.11.008]
32. Levitz SM, Huang H, Ostroff GR, Specht CA. Exploiting fungal cell wall components in vaccines. Seminars in immunopathology 2015; 37(2): 199-207. [DOI:10.1007/s00281-014-0460-6]
33. Colm AM. Functional Components of the cell wall of Saccharomyces cerevisiae: applications for yeast glucan and mannan. In: International Feed Industry Symposium. London: Nottingham University Press; 2004. 283-296.
34. Duan S, Huang Q, Shen X, Hu J, Yi X, Li Z, Ding B. Deproteinization of four macroporous resins for rapeseed meal polysaccharides. Food science and nutrition 2020; 8(1): 322-331. [DOI:10.1002/fsn3.1309]
35. Huang G, Shu S, Cai T, Liu Y, Xiao F. Preparation and deproteinization of garlic polysaccharide. International research on food science and nutrition 2012; 63(6): 739-741. [DOI:10.3109/09637486.2011.652599]
36. Huang G, Chen Y, Wang X. Extraction and deproteinization of pumpkin polysaccharide. International research on food science and nutrition 2011; 62(6): 568-571. [DOI:10.3109/09637486.2011.560566]
37. Huang GL, Yang Q, Wang ZB. Extraction and deproteinization of mannan oligosaccharides. Zeitschrift für Naturforschung C journal of biosciences 2010; 65(5-6): 387-390. [DOI:10.1515/znc-2010-5-611]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb