Volume 25, Issue 1 (1-2021)                   IBJ 2021, 25(1): 33-40 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Forghani H, Jamshidi Makiani M, Zarei Jaliani H, Boustanshenas M, Zahraei S M. Recombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin. IBJ 2021; 25 (1) :33-40
URL: http://ibj.pasteur.ac.ir/article-1-3170-en.html
Abstract:  
Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the PT was used to model an extra disulfide bond. Codon-optimized ORF of the PTS1 was used to make recombinant constructs of PTS1 and LLO-PTS1 in the pPSG-IBA35 vector. The recombinant PTS1 and LLO-PTS1 proteins were expressed in BL21 DE3 and SHuffle T7 strains of E. coli and purified by affinity chromatography. Cytotoxic effects of the recombinant proteins were examined in the MCF-7 cell line. Results: The purity of the products proved to be more than 85%, and the efficiency of the disulfide bond formation in SHuffle T7 strain was higher than BL21 DE3 strain. No cytotoxicity of the recombinant proteins was observed in MCF-7 cells. Soluble recombinant PTS1 and LLO-PTS1 proteins were produced in SHuffle T7 strain of E. coli with high efficiency of disulfide bonds formation. Conclusion: The LLO-PTS1 with corrected disulfide bonds was successfully expressed in E. coli SHuffle T7 strain. Due to the safety for human cells, this chimeric molecule can be an option to prevent pertussis disease if its immunostimulatory effects would be confirmed in the future.

References
1. Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proceedings of the national academy of sciences of the United States of America 2014; 111: 787-792. [DOI:10.1073/pnas.1314688110]
2. Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, Jha P, Campbell H, Walker CF, Cibulskis R, Eisele T, Liu L, Mathers C, Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 2010; 375(9730): 1969-1987. [DOI:10.1016/S0140-6736(10)60549-1]
3. Trollfors B, Taranger J, Lagergård T, Lind L, Sundh V, Zackrisson G, Lowe CU, Blackwelder W, Robbins JB. A placebo-controlled trial of a pertussis-toxoid vaccine. The new England journal of medicine 1995; 333: 1045-1050. [DOI:10.1056/NEJM199510193331604]
4. Patterson J, Kagina BM, Gold M, Hussey GD, Muloiwa R. Adverse events following primary and secondary immunisation with whole-cell pertussis: a systematic review protocol. BMJ open 2017; 7(1): e012945. [DOI:10.1136/bmjopen-2016-012945]
5. Poland GA. Pertussis outbreaks and pertussis vaccines: new insights, new concerns, new recommendations? Vaccine 2012; 30(49): 6957-6959. [DOI:10.1016/j.vaccine.2012.09.084]
6. Hong JY. Update on pertussis and pertussis immunization. Korean journal of pediatrics 2010; 53(5): 629-633. [DOI:10.3345/kjp.2010.53.5.629]
7. de Greeff SC, Mooi FR, Westerhof A, Verbakel JMM, Peeters MF, Heuvelman CJ, Elvers LH, Schellekens JFP, de Melker HE. Pertussis disease burden in the household: how to protect young infants. Clinical infectious diseases 2010; 50(10): 1339-1345. [DOI:10.1086/652281]
8. Pittman M. Pertussis toxin: the cause of the harmful effects and prolonged immunity of whooping cough. A hypothesis. Reviews of infectious diseases 1979; 1(3): 401-412. [DOI:10.1093/clinids/1.3.401]
9. Robbins JB, Schneerson R, Keith JM, Miller MA, Kubler-Kielb J, Trollfors B. Pertussis vaccine: a critique. Pediatric infectious disease journal 2009; 28(3): 237-241. [DOI:10.1097/INF.0b013e31818a8958]
10. Shahin RD, Brennan MJ, Li ZM, Meade BD, Manclark CR. Characterization of the protective capacity and immunogenicity of the 69-kd outer membrane protein of Bordetella pertussis. Journal of experimental medicine 1990; 171: 63-73. [DOI:10.1084/jem.171.1.63]
11. Coutte L, Locht C. Investigating pertussis toxin and its impact on vaccination. Future microbiology 2015; 10(2): 241-254. [DOI:10.2217/fmb.14.123]
12. Kapil P, Merkel TJ. Pertussis vaccines and protective immunity. Current opinion in immunology 2019; 59: 72-78. [DOI:10.1016/j.coi.2019.03.006]
13. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nature medicine 2013; 19(12): 1597-1608. [DOI:10.1038/nm.3409]
14. Wallecha A, French C, Petit R, Singh R, Amin A, Rothman J. Lm-LLO-based immunotherapies and HPV-associated disease. Journal of oncology 2012; 2012: 542851. [DOI:10.1155/2012/542851]
15. Shahabi V, Seavey MM, Maciag PC, Rivera S, Wallecha A. Development of a live and highly attenuated Listeria monocytogenes-based vaccine for the treatment of Her2/neu-overexpressing cancers in human. Cancer gene therapy 2011; 18(1): 53-62. [DOI:10.1038/cgt.2010.48]
16. Kumar TD, Balakrishna K, Murali HS, Batra HV. Construction of a recombinant intergenus multidomain chimeric protein for simultaneous expression of haemolysin BL of Bacillus cereus, listeriolysin O of Listeria monocytogenes and enterotoxin B of Staphylococcus aureus. Journal of medical microbiology 2009; 58(Pt 5): 577-583. [DOI:10.1099/jmm.0.007658-0]
17. Kim SH, Castro F, Paterson Y, Garvekamp C. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer research 2009; 69(14): 5860-5866. [DOI:10.1158/0008-5472.CAN-08-4855]
18. Peng X, Treml J, Paterson Y. Adjuvant properties of listeriolysin O protein in a DNA vaccination strategy. Cancer immunology immunotherapy 2007; 56(6): 797-806. [DOI:10.1007/s00262-006-0240-9]
19. Thangudu RR, Vinayagam A, Pugalenthi G, Manonmani A, Offmann B, Sowdhamini R. Native and modeled disulfide bonds in proteins: knowledge-based approaches toward structure prediction of disulfide-rich polypeptides. Proteins 2005; 58(4): 866-879. [DOI:10.1002/prot.20369]
20. Dombkowski AA. Disulfide by design: a computational method for the rational design of disulfide bonds in proteins. Bioinformatics 2003; 19(14): 1852-1853. [DOI:10.1093/bioinformatics/btg231]
21. Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with yasara nova-a self-parameterizing force field. Structure, function and genetics 2002; 47: 393-402. [DOI:10.1002/prot.10104]
22. Jaliani HZ, Farajnia S, Mohammadi SA, Barzegar A, Talebi S. Engineering and kinetic stabilization of the therapeutic enzyme Anabeana variabilis phenylalanine ammonia lyase. Biotechnology and applied biochemistry 2013; 171: 1805-1818. [DOI:10.1007/s12010-013-0450-5]
23. Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microbial cell factories 2012; 11:56. [DOI:10.1186/1475-2859-11-56]
24. Kong B, Guo GL. Soluble expression of disulfide bond containing proteins FGF15 and FGF19 in the cytoplasm of Escherichia coli. PloS one 2014; 9(1): e85890. [DOI:10.1371/journal.pone.0085890]
25. Sermadiras I, Revell J, Linley JE, Sandercock A, Ravn P. Recombinant expression and in vitro characterisation of active Huwentoxin-IV. PloS one 2013; 8(12): e83202. [DOI:10.1371/journal.pone.0083202]
26. Robbins JB, Schneerson R, Kubler-Kielb J, Trolifors B,Vinogradoy E, Shiloach J. Toward a new vaccine for pertussis. Proceedings of the national academy of sciences of USA 2014; 111(9): 3213-3216. [DOI:10.1073/pnas.1324149111]
27. Robbins JB, Schneerson R, Keith JM, Shilooach J, Miller M, Trollors B. The rise in pertussis cases urges replacement of chemically-inactivated with genetically-inactivated toxoid for DTP. Vaccine 2007; 25(15): 2811-2816. [DOI:10.1016/j.vaccine.2006.12.013]
28. Rowe J, Yerkovich ST, Richmond P, Suriyaarachchi D, Fisher E, Feddema L, Loh R, Sly PD, Holt PG. Th2-associated local reactions to the acellular diphtheria-tetanus-pertussis vaccine in 4- to 6-year-old children. Infections immunity 2005; 73(12): 8130-8135. [DOI:10.1128/IAI.73.12.8130-8135.2005]
29. Locht C. Pertussis: Where did we go wrong and what can we do about it? Journal of infection 2016; 72 Suppl: S34-S40. [DOI:10.1016/j.jinf.2016.04.020]
30. Robbins JB, Schneerson R, Trollfors B, Sato H, Sato Y, Rappuoli R, Keith JM. The diphtheria and pertussis components of diphtheria-tetanus toxoids-pertussis vaccine should be genetically inactivated mutant toxins. Journal of infection 2005; 191(1): 81-88. [DOI:10.1086/426454]
31. Baxter D. Active and passive immunity, vaccine types, excipients and licensing. Occupational medicine (Lond) 2007 ; 57(8) :552-556. [DOI:10.1093/occmed/kqm110]
32. Lee SF, Halperin SA, Knight JB, Tait A. Purification and immunogenicity of a recombinant Bordetella pertussis S1S3FHA fusion protein expressed by Streptococcus gordonii. Applied and environmental microbiology 2002; 68(9): 4253-4258. [DOI:10.1128/AEM.68.9.4253-4258.2002]
33. Nascimento IP, Dias WO, Mazzantini RP, Miyaji EN, Gamberini M, Quintilio W, Gebara VC, Cardoso DF, Paulo LH, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LCC. Recombinant mycobacterium bovis bcg expressing pertussis toxin subunit s1 induces protection against an intracerebral challenge with live Bordetella pertussis in mice. Infection and immunity 2000; 68(9): 4877-4883. [DOI:10.1128/IAI.68.9.4877-4883.2000]
34. Brodzik R, Spitsin S, Pogrebnyak N, Bandurska K, Portocarrero C, Andryszak K, Koprowski H, Golovkin M. Generation of plant-derived recombinant DTP subunit vaccine. Vaccine 2009; 27(28): 3730-3734. [DOI:10.1016/j.vaccine.2009.03.084]
35. Burnette WN, Arciniega JL, Mar VL, Burns DL. Properties of pertussis toxin B oligomer assembled in vitro from recombinant polypeptides produced by Escherichia coli. Infection and immunity 1992; 60(6): 2252-2256. [DOI:10.1128/IAI.60.6.2252-2256.1992]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb