Volume 24, Issue 6 (10-2020)                   ibj 2020, 24(6): 400-403 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alizadeh R, Jamshidi S, Keramatipour M, Moeinian P, Hosseini R, Otukesh H et al . Whole Exome Sequencing Reveals a XPNPEP3 Novel Mutation Causing Nephronophthisis in a Pediatric Patient. ibj. 2020; 24 (6) :400-403
URL: http://ibj.pasteur.ac.ir/article-1-3143-en.html
Abstract:  
Background: Nephronophthisis (NPHP) is a progressive tubulointestinal kidney condition that demonstrates an AR inheritance pattern. Up to now, more than 20 various genes have been detected for NPHP, with NPHP1 as the first one detected. X-prolyl aminopeptidase 3 (XPNPEP3) mutation is related to NPHP-like 1 nephropathy and late onset NPHP. Methods: The proband (index patient) had polyuria, polydipsia and chronic kidney disease and was clinically suspected of NPHP. After the collection of blood sample from proband and her parents, whole exome sequencing (WES) was performed to identify the possible variants in the proband from a consanguineous marriage. The functional importance of variants was estimated by bioinformatic analysis. In the affected proband and her parents, Sanger sequencing was conducted for variants’ confirmation and segregation analysis. Results: Clinical and paraclinical investigations of the patient was not informative. Using WES, we could detect a novel homozygous frameshift mutation in XPNPEP3 (NM_022098.2: c.719_720insA; p. Q241Tfs*13), and by Sanger sequencing, we demonstrated an insertion in XPNPEP3. Conclusion: The homozygous genotype of the novel p.Q241Tfs*31 variant in XPNPEP3 may cause NPHP in the early childhood age.
Type of Study: Case Report | Subject: Molecular Genetics & Genomics

References
1. Wolf MT, Hildebrandt F. Nephronophthisis. Pediatric nephrology 2011; 26(2): 181-194. [DOI:10.1007/s00467-010-1585-z]
2. Salomon R, Saunier S, Niaudet P. Nephronophthisis. Pediatric nephrology 2009; 24(12): 2333-2344. [DOI:10.1007/s00467-008-0840-z]
3. Srivastava S, Molinari E, Raman S, Sayer JA. Many genes-one disease? genetics of nephronophthisis (NPHP) and NPHP-associated disorders. Frontiers in pediatrics 2018; 5: 287. [DOI:10.3389/fped.2017.00287]
4. Luo F, Tao YH. Nephronophthisis: A review of genotype-phenotype correlation. Nephrology (Carlton). 2018; 23(10): 904-911. [DOI:10.1111/nep.13393]
5. Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. Journal of the American society of nephrology 2007; 18(6):1855-1871. [DOI:10.1681/ASN.2006121344]
6. Simms RJ, Eley L, Sayer JA. Nephronophthisis. European journal of human genetics 2009; 17(4): 406-416. [DOI:10.1038/ejhg.2008.238]
7. Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. American journal of medical genetics part C: seminars in medical genetics 2009; 151c(4): 281-295. [DOI:10.1002/ajmg.c.30231]
8. Otto EA, Ramaswami G, Janssen S, Chaki M, Allen SJ, Zhou W, Airik R, Hurd TW, Ghosh AK, Wolf MT, Hoppe B, Neuhaus TJ, Bockenhauer D, Milford DV, Soliman NA, Antignac C, Saunier S, Johnson CA, Hildebrandt F; GPN Study Group. Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy. Journal of medical genetics 2011; 48(2): 105-116. [DOI:10.1136/jmg.2010.082552]
9. Wolf MT. Nephronophthisis and related syndromes. Current opinion in pediatrics 2015; 27(2): 201-211. [DOI:10.1097/MOP.0000000000000194]
10. O'Toole JF, Liu Y, Davis EE, Westlake CJ, Attanasio M, Otto EA, Seelow D, Nurnberg G, Becker C, Nuutinen M, Kärppä M, Ignatius J, Uusimaa J, Pakanen S, Jaakkola E, van den Heuvel LP, Fehrenbach H, Wiggins R, Goyal M, Zhou W, Wolf MT, Wise E, Helou J, Allen SJ, Murga-Zamalloa CA, Ashraf S, Chaki M, Heeringa S, Chernin G, Hoskins BE, Chaib H, Gleeson J, Kusakabe T, Suzuki T, Isaac RE, Quarmby LM, Tennant B, Fujioka H, Tuominen H, Hassinen I, Lohi H, van Houten JL, Rotig A, Sayer JA, Rolinski B, Freisinger P, Madhavan SM, Herzer M, Madignier F, Prokisch H, Nurnberg P, Jackson PK, Khanna H, Katsanis N, Hildebrandt F. Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. Journal of clinical investigation 2010; 120(3): 791-802. [DOI:10.1172/JCI40076]
11. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols 2009; 4(7): 1073-1081. [DOI:10.1038/nprot.2009.86]
12. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nature methods 7(4): 248-249. [DOI:10.1038/nmeth0410-248]
13. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nature genetics 2014; 46(3): 310-315. [DOI:10.1038/ng.2892]
14. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nature methods 2014; 11(4): 361-362. [DOI:10.1038/nmeth.2890]
15. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine 2015; 17(5): 405-424. [DOI:10.1038/gim.2015.30]
16. Srivastava S, Sayer JA. Nephronophthisis. Journal of pediatric genetics 2014; 3(2): 103-114. [DOI:10.3233/PGE-14086]
17. Hug N, Longman D, Cáceres JF. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic acids research 2016; 44(4): 1483-1495. [DOI:10.1093/nar/gkw010]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2020 All Rights Reserved | Iranian Biomedical Journal

Designed & Developed by : Yektaweb