Volume 29, Issue 6 (11-2025)                   IBJ 2025, 29(6): 437-450 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hoseinbeyki M, Moradifard S, Mirkhani F, Shariati F S, Ehsani P, Alaei M R et al . Novel FKBP10 Mutation in Iranian Patients with Osteogenesis Imperfecta: Insights from Whole-Exome Sequencing to Molecular Dynamics. IBJ 2025; 29 (6) :437-450
URL: http://ibj.pasteur.ac.ir/article-1-5278-en.html
Abstract:  
Background: Osteogenesis imperfecta (OI) is a rare hereditary disorder affecting bone and connective tissue. While most cases are linked to autosomal dominant mutations in the COL1A1 and COL1A2 genes, FKBP10 variants are associated with the autosomal recessive form of OI, type XI. The study represents the first cohort-based evaluation of the FKBP10 mutational spectrum in Iranian patients, leading to the discovery of a novel variant.
Methods: Thirty Iranian patients clinically diagnosed with OI were enrolled for genetic analysis. Whole-exome sequencing (WES) was performed to identify pathogenic variants, validated by PCR and sanger sequencing in patients and their parents. To explore the biological relevance of the identified variants, we constructed PPI networks and performed functional enrichment analysis using the ClueGO plugin. Molecular dynamics (MD) simulations with GROMACS were used to assess the structural impact of the mutations.
Results: Among 30 families, four exhibited pathogenic FKBP10 variants. Three patients were homozygous for the previously reported mutation c.831dupC: p.G278Rfs95), while the fourth harbored a novel homozygous deletion (c.855_859del: p. G286Lfs84). Network analysis revealed significant involvement of CRTAP, IFITM5, SERPINF1, PPIB, FKBP10, P3H1, SERPINH1, and PLOD2 in collagen-related pathways. Computational modeling and MD simulations indicated reduced flexibility and more compact folding in the mutant FKBP10 protein, which aligns with impaired protein function and defective collagen processing. 
Conclusion: This study reports a novel FKBP10 variant and presents the first cohort-based analysis of FKBP10 mutations in Iranian patients with OI. It demonstrates the value of combining WES with computational modeling to elucidate the molecular mechanisms underlying OI.

References
1. Mujanovic N. Osteogenesis imperfecta-a current overview. Surg Child. 2025;2(1):28-32. [DOI:10.51271/SOC-0030]
2. Lin X, Hu J, Zhou B, Zhang Q, Jiang Y, Wang O, et al. Genotype-phenotype relationship and comparison between eastern and western patients with osteogenesis imperfecta. J Endocrinol Invest. 2024;47(1):67-77. [DOI:10.1007/s40618-023-02123-2]
3. Sillence DO. A dyadic nosology for osteogenesis imperfecta and bone fragility syndromes 2024. Calcif Tissue Int. 2024;115(6):873-90. [DOI:10.1007/s00223-024-01248-7]
4. Batkovskyte D, Swolin‐Eide D, Hammarsjö A, Sæther KB, Thunström S, Lundin J, et al. Structural variants in COL1A1 and COL1A2 in osteogenesis imperfecta. Am J Med Genet A. 2025;197(3):63935. [DOI:10.1002/ajmg.a.63935]
5. Valadares ER, Carneiro TB, Santos PM, Oliveira AC, Zabel B. What is new in genetics and osteogenesis imperfecta classification? J Pediatr. 2014;90(6):536-41. [DOI:10.1016/j.jped.2014.05.003]
6. Sillence D. AB019. Osteogenesis imperfecta 2015: New genes, new treatments-an Asia pacific perspective. Ann Transl Med. 2015;3(2):19.
7. Patterson CE, Gao J, Rooney AP, Davis EC. Genomic organization of mouse and human 65 kDa FK506-binding protein genes and evolution of the FKBP multigene family. Genomics. 2002;79(6):881-9. [DOI:10.1006/geno.2002.6777]
8. Murphy LA, Ramirez EA, Trinh VT, Herman AM, Anderson VC, Brewster JL. Endoplasmic reticulum stress or mutation of an EF-hand Ca(2+)-binding domain directs the FKBP65 rotamase to an ERAD-based proteolysis. Cell Stress Chaperones. 2011;16(6):607-19. [DOI:10.1007/s12192-011-0270-x]
9. Barnes AM, Cabral WA, Weis M, Makareeva E, Mertz EL, Leikin S, et al. Absence of FKBP10 in recessive type XI osteogenesis imperfecta leads to diminished collagen cross-linking and reduced collagen deposition in extracellular matrix. Hum Mutat. 2012;33(11):1589-98. [DOI:10.1002/humu.22139]
10. Otaify GA, Abdel‐Hamid MS, Hassib NF, Elhossini RM, Abdel‐Ghafar SF, Aglan MS. Bruck syndrome in 13 new patients: Identification of five novel FKBP10 and PLOD2 variants and further expansion of the phenotypic spectrum. Am J Med Genet A. 2022;188(6):1815-25. [DOI:10.1002/ajmg.a.62718]
11. Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(4):551-9. [DOI:10.1016/j.ajhg.2010.02.022]
12. Merkuryeva ES, Markova TV, Kenis VM, Agranovich OE, Dan IM, Kotalevskaya YY, et al. Presentation of rare phenotypes associated with the FKBP10 gene. Genes. 2024;15(6):674. [DOI:10.3390/genes15060674]
13. Alfares A, Alfadhel M, Wani T, Alsahli S, Alluhaydan I, Al Mutairi F, et al. A multicenter clinical exome study in unselected cohorts from a consanguineous population of Saudi Arabia demonstrated a high diagnostic yield. Mol Genet Metab. 2017;121(2):91-5. [DOI:10.1016/j.ymgme.2017.04.002]
14. Essawi OH, Tapaneeyaphan P, Symoens S, Gistelinck C, Malfait F, Eyre DR, et al. New insights on the clinical variability of FKBP10 mutations. Eur J Med Genet. 2020;63(9):103980. [DOI:10.1016/j.ejmg.2020.103980]
15. Chetty M, Roberts T, Shaik S, Beighton P. Dentinogenesis imperfecta in osteogenesis imperfecta type XI in South Africa: A genotype-phenotype correlation. BDJ Open. 2019;5(1):4. [DOI:10.1038/s41405-019-0014-z]
16. Shaheen R, Al‐Owain M, Faqeih E, Al‐Hashmi N, Awaji A, Al‐Zayed Z, et al. Mutations in FKBP10 cause both bruck syndrome and isolated osteogenesis imperfecta in humans. Am J Med Genet A. 2011;155(6):1448-52. [DOI:10.1002/ajmg.a.34025]
17. Seyedhassani SM, Hashemi-Gorji F, Yavari M, Harazi F, Yassaee VR. Novel FKBP10 mutation in a patient with osteogenesis imperfecta type XI. Fetal Pediatr Pathol. 2016;35(5):353-8. [DOI:10.1080/15513815.2016.1191567]
18. Evin F, Atik T, Onay H, Goksen D, Darcan S, Cogulu O, et al. Effectiveness of whole exome sequencing analyses in the molecular diagnosis of osteogenesis imperfecta. J Pediatr Endocrinol Metab. 2024;37(8):693-700. [DOI:10.1515/jpem-2024-0058]
19. Childers MC, Daggett V. Insights from molecular dynamics simulations for computational protein design. Mol Syst Des Eng. 2017;2(1):9-33. [DOI:10.1039/C6ME00083E]
20. Huang J, Liang X, Xuan Y, Geng C, Li Y, Lu H, et al. A reference human genome dataset of the BGISEQ-500 sequencer. Gigascience. 2017;6(5):1-9. [DOI:10.1093/gigascience/gix024]
21. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-60. [DOI:10.1093/bioinformatics/btp324]
22. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-303. [DOI:10.1101/gr.107524.110]
23. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-43. [DOI:10.1038/s41586-020-2308-7]
24. Auton A, Salcedo T. The 1000 genomes project. Assessing rare variation in complex traits; Design and analysis of genetic studies. Springer. 2015:71-85. [DOI:10.1007/978-1-4939-2824-8_6]
25. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-91. [DOI:10.1038/nature19057]
26. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(1):605-12. [DOI:10.1093/nar/gkaa1074]
27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. [DOI:10.1101/gr.1239303]
28. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3. [DOI:10.1093/bioinformatics/btp101]
29. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc. 2009;4(1):1-13. [DOI:10.1038/nprot.2008.197]
30. Das S, Johri P, Sharma R, Kashyap M, Singh S, Singh S. Comparative modeling, characterization and energy minimization studies of aquaporin 9: An exclusive target protein for rheumatoid arthritis. Int J Pharm Investig. 2019;9(2):43-6. [DOI:10.5530/ijpi.2019.2.9]
31. Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al. The interPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49(1):344-54. [DOI:10.1093/nar/gkaa977]
32. Aris P, Mohamadzadeh M, Wei Y, Xia X. In Silico molecular dynamics of griseofulvin and its derivatives revealed potential therapeutic applications for COVID-19. Int J Mol Sci. 2022;23(13):6889. [DOI:10.3390/ijms23136889]
33. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985;31(3):1695-97. [DOI:10.1103/PhysRevA.31.1695]
34. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem phys. 1995;103(19):8577-93. [DOI:10.1063/1.470117]
35. Kamguia SD, Njabon EN, Patouossa I, Emadak A, Forlemu N. A comparative analysis of cockroach and mosquito, octopamine receptor homologues produced using chimera, swiss-model, and alphafold molecular modeling tools. ACS Omega. 2025;10(8):7907-19. [DOI:10.1021/acsomega.4c08755]
36. Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, et al. Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res. 2011;26(3):666-72. [DOI:10.1002/jbmr.250]
37. Caparros‐Martin JA, Aglan MS, Temtamy S, Otaify GA, Valencia M, Nevado J, et al. Molecular spectrum and differential diagnosis in patients referred with sporadic or autosomal recessive osteogenesis imperfecta. Mol Genet Genomic Med. 2016;5(1):28-39. [DOI:10.1002/mgg3.257]
38. Vorster A, Beighton P, Chetty M, Ganie Y, Henderson B, Honey E, et al. Osteogenesis imperfecta type 3 in South Africa: Causative mutations in FKBP10. S Afr Med J. 2017;107(5):457-62. [DOI:10.7196/SAMJ.2017.v107i5.9461]
39. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405-24. [DOI:10.1038/gim.2015.30]
40. Duran I, Martin JH, Weis MA, Krejci P, Konik P, Li B, et al. A chaperone complex formed by HSP47, FKBP65, and BiP modulates telopeptide lysyl hydroxylation of type I procollagen. J Bone Miner Res. 2017;32(6):1309-19. [DOI:10.1002/jbmr.3095]
41. Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Pals G, et al. Collagen transport and related pathways in osteogenesis imperfecta. Hum Genet. 2021;140(8):1121-41. [DOI:10.1007/s00439-021-02302-2]
42. Steinlein OK, Aichinger E, Trucks H, Sander T. Mutations in FKBP10 can cause a severe form of isolated osteogenesis imperfecta. BMC Med Genet. 2011;12(1):152. [DOI:10.1186/1471-2350-12-152]
43. Yao J, Ding Y, Liu X, Huang J, Zhang M, Zhang Y, et al. Application value of whole exome sequencing in screening and identifying novel mutations of hypopharyngeal cancer. Sci Rep. 2023;13(1):107. [DOI:10.1038/s41598-022-27273-w]
44. Yelkur P, Mohammed S, Narayan K. Congenital contractures and fractures: A variant of Bruck syndrome type 2. Cureus. 2024;16(6):61991. [DOI:10.7759/cureus.61991]
45. Puig‐Hervás MT, Temtamy S, Aglan M, Valencia M, Martínez‐Glez V, Ballesta‐Martínez MJ, et al. Mutations in PLOD2 cause autosomal‐recessive connective tissue disorders within the Bruck syndrome-osteogenesis imperfecta phenotypic spectrum. Hum Mutat. 2012;33(10):1444-9. [DOI:10.1002/humu.22133]
46. Kaneto CM, Lima PS, Zanette DL, Oliveira TYK, de Assis Pereira F, Lorenzi JCC, et al. Osteoblastic differentiation of bone marrow mesenchymal stromal cells in Bruck Syndrome. BMC Med Genet. 2016;17(1):38. [DOI:10.1186/s12881-016-0301-7]
47. Sobaihi M, Habiballah AK, Habib AM. TMEM38B gene mutation associated with osteogenesis imperfecta. Cureus. 2024;16(9):69021. [DOI:10.7759/cureus.69021]
48. Garibaldi N, Besio R, Dalgleish R, Villani S, Barnes AM, Marini JC, et al. Dissecting the phenotypic variability of osteogenesis imperfecta. Dis Model Mech. 2022;15(5):49398. [DOI:10.1242/dmm.049398]
49. Jovanovic M, Marini JC. Update on the genetics of osteogenesis imperfecta. Calcif Tissue Int. 2024;115(6):891-914. [DOI:10.1007/s00223-024-01266-5]
50. Moosa S, Yamamoto GL, Garbes L, Keupp K, Beleza-Meireles A, Moreno CA, et al. Autosomal-recessive mutations in MESD cause osteogenesis imperfecta. Am J Hum Genet. 2019;105(4):836-43. [DOI:10.1016/j.ajhg.2019.08.008]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb