Volume 29, Issue 6 (11-2025)                   IBJ 2025, 29(6): 384-396 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noori A, Amini-Bayat Z, Mirdamadi S, Azizmohseni F, Arab S S, Moshref-Javadi M. Engineering a Potent Anti-MRSA Agent: The Development and Characterization of Chimeric Endolysin ZAM-MSC. IBJ 2025; 29 (6) :384-396
URL: http://ibj.pasteur.ac.ir/article-1-5200-en.html
Abstract:  
Background: The increasing prevalence of Staphylococcus aureus, especially methicillin-resistant strains, poses a major healthcare threat due to limited therapies. To address this challenge, we engineered the chimeric endolysin ZAM-MSC as a potent antibiotic alternative, using domain-fusion strategies to enhance antibacterial activity. We designed ZAM-MSC by integrating the catalytic (M23) and cell wall-binding (SH3b) domains of lysostaphin with the catalytic domain (CHAP) from endolysin SAL-1. Structural optimization was performed using AlphaFold2 prediction, AutoDock Vina docking, and GROMACS simulations to evaluate domain interactions, protein stability, and binding dynamics.
Methods: The chimeric construct was cloned into pCold I, expressed in E. coli, and purified under solubility-optimized conditions. Purified ZAM-MSC, at a minimum concentration of 3 μg, reduced bacterial optical density within 15 minutes, demonstrating potent lytic activity. Thermal stability assays indicated that ZAM-MSC retained its enzymatic activity over 80–90% across 4-37 °C, with only a 10–20% decrease at 25-37 °C after 30 minutes. NaCl stability tests revealed maximal activity in the absence of NaCl, with gradual reduction in enzyme activity by increasing NaCl concentrations.
Results: Cytotoxicity analysis via MTT assay on L929 fibroblast cells showed cell viabilities of ~85-90% ± 5% at the highest enzyme concentrations tested, with no detectable cytotoxic effect compared to untreated controls. Hemolysis assays confirmed nearly 100% red blood cell integrity across all tested enzyme concentrations, supporting its biocompatibility with mammalian cells.
Conclusion: Our findings establish ZAM-MSC as a highly promising therapeutic candidate, combining computational precision with robust experimental validation.

References
1. Dulon M, Haamann F, Peters C, Schablon A, Nienhaus A. MRSA prevalence in European healthcare settings: A review. BMC Infect Dis. 2011;11:138. [DOI:10.1186/1471-2334-11-138]
2. Stefani S, Goglio A. Methicillin-resistant staphylococcus aureus: Related infections and antibiotic resistance. Int J Infect Dis. 2010;14:19-22. [DOI:10.1016/j.ijid.2010.05.009]
3. Borysowski J, Weber-Dąbrowska B, Górski A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med. 2006;231(4):366-77. [DOI:10.1177/153537020623100402]
4. Schmelcher M, Loessner MJ. Bacteriophage endolysins: Applications for food safety. Curr Opin Biotechnol. 2016;37:76-87. [DOI:10.1016/j.copbio.2015.10.005]
5. O'flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol. 2005;187(20):7161-4. [DOI:10.1128/JB.187.20.7161-7164.2005]
6. Gutiérrez D, Fernández L, Rodríguez A, García P. Are phage lytic proteins the secret weapon to Kill Staphylococcus aureus? mBio. 2018;9(1):e01923-17. [DOI:10.1128/mBio.01923-17]
7. Manoharadas S, Witte A, Bläsi U. Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J Biotechnol. 2009;139(1):118-23. [DOI:10.1016/j.jbiotec.2008.09.003]
8. Lee C, Kim J, Son B, Ryu S. Development of advanced chimeric endolysin to control multidrug-resistant Staphylococcus aureus through domain shuffling. ACS Infect Dis. 2021;7(8):2081-92. [DOI:10.1021/acsinfecdis.0c00812]
9. Ahmadbeigi Y, Soleimani N, Azizmohseni F, Amini-Bayat Z. ZAM-CS, a novel chimeric endolysin with enhanced stability and rapid action against methicillin-resistant Staphylococcus aureus. BMC Microbiol. 2025;25(1):357. [DOI:10.1186/s12866-025-04074-5]
10. Momen S, Soleimani N, Azizmohseni F, Ahmadbeigi Y, Borhani S, Amini-Bayat Z. Characterization and bioinformatic analysis of a new chimeric endolysin against MRSA with great stability. AMB Express. 2024;14(1):143. [DOI:10.1186/s13568-024-01812-2]
11. Fernandes S, Proença D, Cantante C, Silva FA, Leandro C, Lourenço S, et al. Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus. Microb Drug Resist. 2012;18(3):333-43. [DOI:10.1089/mdr.2012.0025]
12. Becker SC, Roach DR, Chauhan VS, Shen Y, Foster-Frey J, Powell AM, et al. Triple-acting lytic enzyme treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep. 2016;6(1):25063. [DOI:10.1038/srep25063]
13. Ahmadbeigi Y, Soleimani N, Azizmohseni F, Amini-Bayat Z. Biofilm formation and eradication of Staphylococcus aureus: A study of culture conditions and endolysin ZAM-CS effect. Iran J Microbiol. 2025;17(4):586-92. [DOI:10.18502/ijm.v17i4.19247]
14. Singh PK, Donovan DM, Kumar A. Intravitreal injection of the chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis. Antimicrob Agents Chemother. 2014;58(8):4621-9. [DOI:10.1128/AAC.00126-14]
15. Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, et al. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother. 2015;70(5):1453-65. [DOI:10.1093/jac/dku552]
16. Jun SY, Jung GM, Son J-S, Yoon SJ, Choi Y-J, Kang SH. Comparison of the antibacterial properties of phage endolysins SAL-1 and LysK. Antimicrob Agents Chemother. 2011;55(4):1764-7. [DOI:10.1128/AAC.01097-10]
17. Bochtler M, Odintsov SG, Marcyjaniak M, Sabala I. Similar active sites in lysostaphins and D‐Ala‐D‐Ala metallopeptidases. Protein Sci. 2004;13(4):854-61. [DOI:10.1110/ps.03515704]
18. Dehart HP, Heath HE, Heath LS, Leblanc PA, Sloan GL. The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus. Appl Environ Microbiol. 1995;61(7):2811. [DOI:10.1128/aem.61.7.2811-2811.1995]
19. Sugai M, Fujiwara T, Ohta K, Komatsuzawa H, Ohara M, Suginaka H. Epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. J Bacteriol. 1997;179(13):4311-8. [DOI:10.1128/jb.179.13.4311-4318.1997]
20. Gründling A, Missiakas DM, Schneewind O. Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol. 2006;188(17):6286-97. [DOI:10.1128/JB.00457-06]
21. Grallert H, Molinaro S. Chimeric polypeptide and their use in bacterial decolonization. 2018.
22. Sung-Jun Y, Yoon-Jae C, Se-Jeong L, Ji-Soo S, Su-Yeon J, Sang-Hyun K.Antimicrobial proteins from Staphylococcus aureus specific to Staphylococcus Aureus. 2007.
23. Hartley GS, Sharma R. Expression of recombinant mature lysostaphin. 1999.
24. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-9. [DOI:10.1038/s41586-021-03819-2]
25. Shirvanizadeh N, Vriend G, Arab SS. Loop modelling 1.0. J Mol Graph Model. 2018;84:64-8. [DOI:10.1016/j.jmgm.2018.06.001]
26. Qing G, Ma L-C, Khorchid A, Swapna GVT, Mal TK, Takayama MM, et al. Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol. 2004;22(7):877-82. [DOI:10.1038/nbt984]
27. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein folding accessible to all. Nat Methods. 2022;19(6):679-82. [DOI:10.1038/s41592-022-01488-1]
28. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. [DOI:10.1002/jcc.21334]
29. Horgan M, O'Flynn G, Garry J, Cooney J, Coffey A, Fitzgerald GF, et al. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl Environ Microbiol. 2009;75(3):872-4. [DOI:10.1128/AEM.01831-08]
30. Idelevich EA, Von Eiff C, Friedrich AW, Iannelli D, Xia G, Peters G, et al. In vitro activity against Staphylococcus aureus of a novel antimicrobial agent, PRF-119, a recombinant chimeric bacteriophage endolysin. Antimicrob Agents Chemother. 2011;55(9):4416-9. [DOI:10.1128/AAC.00217-11]
31. Yang H, Luo D, Etobayeva I, Li X, Gong Y, Wang S, et al. Linker editing of pneumococcal lysin ClyJ conveys improved bactericidal activity. Antimicrob Agents Chemother. 2020;64(2):e01610-19. [DOI:10.1128/AAC.01610-19]
32. Vázquez R, García E, García P. Phage lysins for fighting bacterial respiratory infections: A new generation of antimicrobials. Front Immunol. 2018;9:2252. [DOI:10.3389/fimmu.2018.02252]
33. Ajuebor J, McAuliffe O, O'Mahony J, Ross RP, Hill C, Coffey A. Bacteriophage endolysins and their applications. Sci Prog. 2016;99(2):183-99. [DOI:10.3184/003685016X14627913637705]
34. Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol. 2012;78(7):2297-305. [DOI:10.1128/AEM.07050-11]
35. Ruiz DM, Turowski VR, Murakami MT. Effects of the linker region on the structure and function of modular GH5 cellulases. Sci Rep. 2016;6(1):28504. [DOI:10.1038/srep28504]
36. Fischetti VA. Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol. 2008;11(5):393-400. [DOI:10.1016/j.mib.2008.09.012]
37. Rodríguez-Rubio L, Gutiérrez D, Donovan DM, Martínez B, Rodríguez A, García P. Phage lytic proteins: Biotechnological applications beyond clinical antimicrobials. Crit Rev Biotechnol. 2016;36(3):542-52.
38. Haddad Kashani H, Fahimi H, Dasteh Goli Y, Moniri R. A novel chimeric endolysin with antibacterial activity against methicillin-resistant Staphylococcus aureus. Front Cell Infect Microbiol. 2017;7:290. [DOI:10.3389/fcimb.2017.00290]
39. Asadi M, Taheri-Anganeh M, Ranjbar M, Khatami SH, Maleksabet A, Mostafavi-Pour Z, et al. LYZ2-SH3b as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus. BMC Microbiol. 2023;23(1):257. [DOI:10.1186/s12866-023-03002-9]
40. Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett. 2009;294(1):52-60. [DOI:10.1111/j.1574-6968.2009.01541.x]
41. Daniel A, Euler C, Collin M, Chahales P, Gorelick KJ, Fischetti VA. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54(4):1603-12. [DOI:10.1128/AAC.01625-09]
42. Bjerga GEK, Williamson AK. Cold shock induction of recombinant Arctic environmental genes. BMC Biotechnol. 2015;15(1):78. [DOI:10.1186/s12896-015-0185-1]
43. Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 1996;60(3):512-38. [DOI:10.1128/mr.60.3.512-538.1996]
44. Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986;189(1):113-30. [DOI:10.1016/0022-2836(86)90385-2]
45. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: Advances and challenges. Front Microbiol. 2014;5:172. [DOI:10.3389/fmicb.2014.00172]
46. Sørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact. 2005;4(1):1. [DOI:10.1186/1475-2859-4-1]
47. Kwon Y-C, Jewett MC. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep. 2015;5(1):8663. [DOI:10.1038/srep08663]
48. Singh SM, Panda AK. Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng. 2005;99(4):303-10. [DOI:10.1263/jbb.99.303]
49. Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol. 2004;22(11):1399-408. [DOI:10.1038/nbt1029]
50. Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005;289(1-2):1-30. [DOI:10.1016/j.ijpharm.2004.11.014]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb