Volume 28, Issue 4 (7-2024)                   IBJ 2024, 28(4): 140-147 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maulina N, Hayati Z, Hasballah K, Zulkarnain Z. Tryptophan and Its Derived Metabolites as Biomarkers for Tuberculosis Disease: A Systematic Review. IBJ 2024; 28 (4) :140-147
URL: http://ibj.pasteur.ac.ir/article-1-4174-en.html
Abstract:  
Feasible diagnostic assays are required to detect new tuberculosis (TB) cases and monitor treatment. This study aimed to evaluate evidence on tryptophan (Trp) and its metabolites as proposed biomarkers for TB. Through specific keyword searches, we identified 170 relevant literature sources and included seven publications (from 2013 to 2023). The biomarker used in these studies were indoleamine 2, 3-dioxygenase (IDO) activity, IDO-1 gene expression, and plasma IDO protein, measured using ELISA, liquid chromatography-mass spectrometry, ultraperformance liquid chromatography mass spectrometry, and transcriptional profiling. The studies encompassed a pediatric case-control and six studies involving adults, pregnant women with TB-HIV, and individuals with multidrug-resistant tuberculosis, active TB, and latent TB. The assessment of IDO activity and IDO protein level demonstrated promising performance in distinguishing active TB from controls and in evaluating treatment failure and recurrent cases to controls. Trp and its metabolites fulfilled  nearly all of target product profile criteria for detecting active TB. This study highlights the potential of utilizing host Trp and its metabolites as non-sputum-based biomarker for TB infection.
Type of Study: Systematic Review | Subject: Related Fields

References
1. Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: From the first historical records to the isolation of Koch's bacillus. J Prev Med Hyg. 2017; 58(1):E9-12.
2. Martini M, Riccardi N, Giacomelli A, Gazzaniga V, Besozzi G. Tuberculosis: An ancient disease that remains a medical, social, economical and ethical issue. J Prev Med Hyg. 2020; 61(1 Suppl 1):E16-8.
3. WHO. Global Tuberculosis Report. Geneva; 2023. Available from: https://iris.who.int/bitstream/handle/ 10665/ 373828/9789240083851-eng.pdf?sequence=1
4. BoereMJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2016; 17(1):39-49. [DOI:10.1016/S1473-3099(16)30274-2]
5. Pai M, Behr M. Latent mycobacterium tuberculosis infection and interferon-gamma release assays. Am Soc Microbiol. 2016; 4(5). doi: 10.1128/microbiolspec. [DOI:10.1128/microbiolspec]
6. Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R, Velu V, et al. Immune biomarkers for diagnosis and treatment monitoring of tuberculosis: Current developments and future prospects. Front Microbiol. 2019; 10:2789. [DOI:10.3389/fmicb.2019.02789]
7. Zimmer AJ, Lainati F, Vasquez NA, Chedid C, McGrath S, Benedetti A, et al. Biomarkers that correlate with active pulmonary tuberculosis treatment response: a systematic review and meta-analysis. J Clin Microbiol. 2022; 60(2):e01859-21. [DOI:10.1128/jcm.01859-21]
8. WHO. The End TB Strategy. 2015; Available from: https://iris.who.int/bitstream/handle/10665/331326/WHO-HTM-TB-2015.19-eng.pdf?sequence=1
9. Collins JM, Siddiqa A, Jones DP, Liu K, Kempker RR, Nizam A, et al. Tryptophan catabolism reflects disease activity in human tuberculosis. JCI Insight. 2020; 5(10):e137131. [DOI:10.1172/jci.insight.137131]
10. Melhem NJ, Taleb and S. Tryptophan: From diet to cardiovascular diseases. Int J Mol Sci. 2021; 22(18):9904 [DOI:10.3390/ijms22189904]
11. Sarvenaz M, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS One. 2018; 13(13):e0193737. [DOI:10.1371/journal.pone.0193737]
12. Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM. L-tryptophan: Basic metabolic functions, behavioral rsearch and therapeutic indications. Int J Tryptophan Res. 2009; 2:45-60. [DOI:10.4137/IJTR.S2129]
13. Tardif JC, Kouz S, Waters D, Bertrand OF, Diaz R, Maggioni AP. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019; 381(26):2497-505. [DOI:10.1056/NEJMoa1912388]
14. Wang Q, Ding Y, Song P, Zhu H, Okon I, Ding YN, et al. Tryptophan-derived 3-hydroxyanthranilic acid contributes to angiotensin II-induced abdominal aortic aneurysm formation in mice in vivo. Circulation. 2017; 136:2271-83. [DOI:10.1161/CIRCULATIONAHA.117.030972]
15. Ernst LD and JD. INFγ-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity. 2009; 31(6):974-985. [DOI:10.1016/j.immuni.2009.10.007]
16. Däubener W, Spors B, Hucke C, Adam R, Stins M, Kim KS, et al. Restriction of toxoplasma gondii growth in human brain microvascular endothelial cells by activation of indoleamine 2, 3-dioxygenase. Infect Immun. 2001; 69(10):6527-31. [DOI:10.1128/IAI.69.10.6527-6531.2001]
17. Ganesan S, Roy CR. Host cell depletion of tryptophan by IFNγ-induced Indoleamine 2,3-dioxygenase 1 [IDO1] inhibits lysosomal replication of Coxiella burnetii. PLOS Pathog. 2019; 15(8): e1007955. [DOI:10.1371/journal.ppat.1007955]
18. Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell. 2013;155(6):1296-308. [DOI:10.1016/j.cell.2013.10.045]
19. Gautam US, Foreman TW, Bucsan AN, Veatch AV, Alvarez X, Adekambi T, et al. In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2017; 115(1):E62-71. [DOI:10.1073/pnas.1711373114]
20. Dodd D, Spitzer MH, van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017; 551:648-52. [DOI:10.1038/nature24661]
21. Negatu DA, Gengenbacher M, Dartois V, Dick T. Indole propionic acid, an unusual antibiotic produced by the gut microbiota, with anti-inflammatory and antioxidant properties. Front Microbiol. 2020; 11:575586. [DOI:10.3389/fmicb.2020.575586]
22. Goletti D, Petruccioli E, Joosten SA, Ottenhoff THM. Tuberculosis biomarkers: from diagnosis to protection. Infect Dis Rep. 2016; 8(2):6568. [DOI:10.4081/idr.2016.6568]
23. Kim CH, Choi G, Lee J. Host blood transcriptional signatures as candidate biomarkers for predicting progression to active tuberculosis. Tuberc Respir Dis (Seoul). 2023; 86(2):94-101. [DOI:10.4046/trd.2022.0152]
24. Wen Z, Wu L, Wang L, Ou Q, Ma H, Wu Q, et al. Comprehensive genetic analysis of tuberculosis and identification of candidate biomarkers. Front Genet. 2022; 13:832739. [DOI:10.3389/fgene.2022.832739]
25. Herrera M, Keynan Y, McLaren PJ, Isaza JP, Abrenica B, Lopez L, et al. Gene expression profiling identifies candidate biomarkers for new latent tuberculosis infections. A cohort study. PLoS One. 2022; 17(9):e0274257. [DOI:10.1371/journal.pone.0274257]
26. Acen EL, Kateete DP, Worodria W, Olum R, Joloba ML, Bbuye M, et al. Evaluation of circulating serum cathelicidin levels as a potential biomarker to discriminate between active and latent tuberculosis in Uganda. PLoS One. 2022; 17(8):e0272788. [DOI:10.1371/journal.pone.0272788]
27. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. Int J Surg. 2010; 8(5):336-41. [DOI:10.1016/j.ijsu.2010.02.007]
28. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PMM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003; 3:25. [DOI:10.1186/1471-2288-3-25]
29. Adu-Gyamfi CG, Snyman T, Hoffmann CJ, Martinson NA, Chaisson RE, George JA, et al. Plasma indoleamine 2,3-dioxygenase, a biomarker for tuberculosis in human immunodeficiency virus-infected patients. Clin Infect Dis. 2017; 65(8):1356-63. [DOI:10.1093/cid/cix550]
30. Adu-Gyamfi CG, Snyman T, Makhathini L, Otwombe K, Darboe F, Penn-Nicholson A, et al. Diagnostic accuracy of plasma kynurenine/tryptophan ratio, measured by enzyme-linked immunosorbent assay, for pulmonary tuberculosis. Int J Infect Dis. 2020; 99:441-8. [DOI:10.1016/j.ijid.2020.08.028]
31. Adu-Gyamfi C, Savulescu D, Mikhathani L, Otwombe K, Salazar-Austin N, Chaisson R, et al. Plasma kynurenine-to-tryptophan ratio, a highly sensitive Blood-based diagnostic tool for tuberculosis in pregnant Women living with human immunodeficiency virus (HIV). Clin Infect Dis. 2021; 73(6):1027-36. [DOI:10.1093/cid/ciab232]
32. Kumar NP, Nancy A, Viswanathan V, Sivakumar S, Thiruvengadam K, Ahamed SF, et al. Chitinase and indoleamine 2, 3-dioxygenase are prognostic biomarkers for unfavorable treatment outcomes in pulmonary tuberculosis. Front Immunol. 2023; 14:1093640. [DOI:10.3389/fimmu.2023.1093640]
33. Shi W, Wu J, Tan Q, Hu CM, Zhang X, Pan HQ, et al. Plasma indoleamine 2,3-dioxygenase activity as a potential biomarker for early diagnosis of multidrug-resistant tuberculosis in tuberculosis patients. Infect Drug Resist. 2019; 12:1265-76. [DOI:10.2147/IDR.S202369]
34. Tornheim JA, Paradkar M, Zhao H, Kulkarni V, Pradhan N, Kinikar A, et al. The kynurenine/tryptophan ratio is a sensitive biomarker for the diagnosis of pediatric tuberculosis among Indian children. Front Immunol. 2022; 12:774043. [DOI:10.3389/fimmu.2021.774043]
35. MacLean E, Broger T, Yerlikaya S, Fernandez-Carballo BL, Pai M, Denkinger CM. A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol. 2019; 4(5):748-58. [DOI:10.1038/s41564-019-0380-2]
36. Kik SV, Denkinger CM, Casenghi M, Vadnais C, Pai M. Tuberculosis diagnostics: which target product profiles should be prioritised? Eur Respir J. 2014; 44(2):537-40. [DOI:10.1183/09031936.00027714]
37. Biomarkers definitions working group. Biomarkers and surrogate endpoints. Clin Pharmacol Ther. 2001; 69(3):89-95. [DOI:10.1067/mcp.2001.113989]
38. Wallis RS, Kim P, Cole S, Hanna D, Andrade BB, Maeurer M, et al. Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infect Dis. 2013; 13(4):362-72. [DOI:10.1016/S1473-3099(13)70034-3]
39. Almeida AS, Lago PM, Boechat N, Huard RC, Lazzarini LCO, Santos AR, et al. Tuberculosis is associated with down-modulatory lung immune response that impairs Th1 Type Immunity. J Immunol. 2009; 183(1):718-31. [DOI:10.4049/jimmunol.0801212]
40. Suzuki Y, Suda T, Asada K, Miwa S, Suzuki M, Fujie M, et al. Serum indoleamine 2,3-dioxygenase activity predicts prognosis of pulmonary tuberculosis. Clin Vaccine Immunol. 2012; 19(3):436-42. [DOI:10.1128/CVI.05402-11]
41. Suzuki Y, Miwa S, Akamatsu T, Suzuki M, Fujie M, Nakamura Y, et al. Indoleamine 2,3-dioxygenase in the pathogenesis of tuberculous pleurisy. Int J Tuberc Lung Dis. 2013; 17(11):1501-6. [DOI:10.5588/ijtld.13.0082]
42. Chen J, Xun J, Yang J, Ji Y, Liu L, Qi T, et al. Plasma indoleamine 2, 3-dioxygenase activity is associated with the size of the human immunodeficiency virus reservoir in patients receiving antiretroviral therapy. Clin Infect Dis. 2019; 68(8):1274-81. [DOI:10.1093/cid/ciy676]
43. Adu-Gyamfi CG, Savulescu D, George JA, Suchard SM. Indoleamine 2, 3-dioxygenase-mediated tryptophan catabolism: a leading star or supporting act in the tuberculosis and HIV pas-de-deux?. Front Cell Infect Microbiol. 2019; 9:372. [DOI:10.3389/fcimb.2019.00372]
44. WHO. High priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting. 28-29 April 2014; Geneva, Switzerland. Available from: https://www.who.int/publications/i/item/WHO-HTM-TB-2014.18
45. Yeung AWS, Terentis AC, King NJC, Thomas SR. Role of indoleamine 2, 3-dioxygenase in health and disease. Clin Sci. 2015; 129(7):601-72. [DOI:10.1042/CS20140392]
46. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010; 185(6):3190-8. [DOI:10.4049/jimmunol.0903670]
47. Desvignes L, Ernst JD. Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity. 2009; 31(6):974-85. [DOI:10.1016/j.immuni.2009.10.007]
48. Blumenthal A, Nagalingam G, Huch JH, Walker L, Guillemin GJ, Smythe GA, et al. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection. PLoS one. 2012; 7(5):e37314. [DOI:10.1371/journal.pone.0037314]
49. Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002; 196(4):447-57. [DOI:10.1084/jem.20020052]
50. Williams AC, Dunbar RIM. Big brains, meat, tuberculosis, and the nicotinamide switches: co-evolutionary relationships with modern repercussions. Int J Tryptophan Res. 2013; 6:73-88. [DOI:10.4137/IJTR.S12838]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb