1. Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: From the first historical records to the isolation of Koch's bacillus. J Prev Med Hyg. 2017; 58(1):E9-12.
2. Martini M, Riccardi N, Giacomelli A, Gazzaniga V, Besozzi G. Tuberculosis: An ancient disease that remains a medical, social, economical and ethical issue. J Prev Med Hyg. 2020; 61(1 Suppl 1):E16-8.
3. WHO. Global Tuberculosis Report. Geneva; 2023. Available from: https://iris.who.int/bitstream/handle/ 10665/ 373828/9789240083851-eng.pdf?sequence=1
4. BoereMJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2016; 17(1):39-49. [
DOI:10.1016/S1473-3099(16)30274-2]
5. Pai M, Behr M. Latent mycobacterium tuberculosis infection and interferon-gamma release assays. Am Soc Microbiol. 2016; 4(5). doi: 10.1128/microbiolspec. [
DOI:10.1128/microbiolspec]
6. Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R, Velu V, et al. Immune biomarkers for diagnosis and treatment monitoring of tuberculosis: Current developments and future prospects. Front Microbiol. 2019; 10:2789. [
DOI:10.3389/fmicb.2019.02789]
7. Zimmer AJ, Lainati F, Vasquez NA, Chedid C, McGrath S, Benedetti A, et al. Biomarkers that correlate with active pulmonary tuberculosis treatment response: a systematic review and meta-analysis. J Clin Microbiol. 2022; 60(2):e01859-21. [
DOI:10.1128/jcm.01859-21]
8. WHO. The End TB Strategy. 2015; Available from: https://iris.who.int/bitstream/handle/10665/331326/WHO-HTM-TB-2015.19-eng.pdf?sequence=1
9. Collins JM, Siddiqa A, Jones DP, Liu K, Kempker RR, Nizam A, et al. Tryptophan catabolism reflects disease activity in human tuberculosis. JCI Insight. 2020; 5(10):e137131. [
DOI:10.1172/jci.insight.137131]
10. Melhem NJ, Taleb and S. Tryptophan: From diet to cardiovascular diseases. Int J Mol Sci. 2021; 22(18):9904 [
DOI:10.3390/ijms22189904]
11. Sarvenaz M, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS One. 2018; 13(13):e0193737. [
DOI:10.1371/journal.pone.0193737]
12. Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM. L-tryptophan: Basic metabolic functions, behavioral rsearch and therapeutic indications. Int J Tryptophan Res. 2009; 2:45-60. [
DOI:10.4137/IJTR.S2129]
13. Tardif JC, Kouz S, Waters D, Bertrand OF, Diaz R, Maggioni AP. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019; 381(26):2497-505. [
DOI:10.1056/NEJMoa1912388]
14. Wang Q, Ding Y, Song P, Zhu H, Okon I, Ding YN, et al. Tryptophan-derived 3-hydroxyanthranilic acid contributes to angiotensin II-induced abdominal aortic aneurysm formation in mice in vivo. Circulation. 2017; 136:2271-83. [
DOI:10.1161/CIRCULATIONAHA.117.030972]
15. Ernst LD and JD. INFγ-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity. 2009; 31(6):974-985. [
DOI:10.1016/j.immuni.2009.10.007]
16. Däubener W, Spors B, Hucke C, Adam R, Stins M, Kim KS, et al. Restriction of toxoplasma gondii growth in human brain microvascular endothelial cells by activation of indoleamine 2, 3-dioxygenase. Infect Immun. 2001; 69(10):6527-31. [
DOI:10.1128/IAI.69.10.6527-6531.2001]
17. Ganesan S, Roy CR. Host cell depletion of tryptophan by IFNγ-induced Indoleamine 2,3-dioxygenase 1 [IDO1] inhibits lysosomal replication of Coxiella burnetii. PLOS Pathog. 2019; 15(8): e1007955. [
DOI:10.1371/journal.ppat.1007955]
18. Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell. 2013;155(6):1296-308. [
DOI:10.1016/j.cell.2013.10.045]
19. Gautam US, Foreman TW, Bucsan AN, Veatch AV, Alvarez X, Adekambi T, et al. In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2017; 115(1):E62-71. [
DOI:10.1073/pnas.1711373114]
20. Dodd D, Spitzer MH, van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017; 551:648-52. [
DOI:10.1038/nature24661]
21. Negatu DA, Gengenbacher M, Dartois V, Dick T. Indole propionic acid, an unusual antibiotic produced by the gut microbiota, with anti-inflammatory and antioxidant properties. Front Microbiol. 2020; 11:575586. [
DOI:10.3389/fmicb.2020.575586]
22. Goletti D, Petruccioli E, Joosten SA, Ottenhoff THM. Tuberculosis biomarkers: from diagnosis to protection. Infect Dis Rep. 2016; 8(2):6568. [
DOI:10.4081/idr.2016.6568]
23. Kim CH, Choi G, Lee J. Host blood transcriptional signatures as candidate biomarkers for predicting progression to active tuberculosis. Tuberc Respir Dis (Seoul). 2023; 86(2):94-101. [
DOI:10.4046/trd.2022.0152]
24. Wen Z, Wu L, Wang L, Ou Q, Ma H, Wu Q, et al. Comprehensive genetic analysis of tuberculosis and identification of candidate biomarkers. Front Genet. 2022; 13:832739. [
DOI:10.3389/fgene.2022.832739]
25. Herrera M, Keynan Y, McLaren PJ, Isaza JP, Abrenica B, Lopez L, et al. Gene expression profiling identifies candidate biomarkers for new latent tuberculosis infections. A cohort study. PLoS One. 2022; 17(9):e0274257. [
DOI:10.1371/journal.pone.0274257]
26. Acen EL, Kateete DP, Worodria W, Olum R, Joloba ML, Bbuye M, et al. Evaluation of circulating serum cathelicidin levels as a potential biomarker to discriminate between active and latent tuberculosis in Uganda. PLoS One. 2022; 17(8):e0272788. [
DOI:10.1371/journal.pone.0272788]
27. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. Int J Surg. 2010; 8(5):336-41. [
DOI:10.1016/j.ijsu.2010.02.007]
28. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PMM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003; 3:25. [
DOI:10.1186/1471-2288-3-25]
29. Adu-Gyamfi CG, Snyman T, Hoffmann CJ, Martinson NA, Chaisson RE, George JA, et al. Plasma indoleamine 2,3-dioxygenase, a biomarker for tuberculosis in human immunodeficiency virus-infected patients. Clin Infect Dis. 2017; 65(8):1356-63. [
DOI:10.1093/cid/cix550]
30. Adu-Gyamfi CG, Snyman T, Makhathini L, Otwombe K, Darboe F, Penn-Nicholson A, et al. Diagnostic accuracy of plasma kynurenine/tryptophan ratio, measured by enzyme-linked immunosorbent assay, for pulmonary tuberculosis. Int J Infect Dis. 2020; 99:441-8. [
DOI:10.1016/j.ijid.2020.08.028]
31. Adu-Gyamfi C, Savulescu D, Mikhathani L, Otwombe K, Salazar-Austin N, Chaisson R, et al. Plasma kynurenine-to-tryptophan ratio, a highly sensitive Blood-based diagnostic tool for tuberculosis in pregnant Women living with human immunodeficiency virus (HIV). Clin Infect Dis. 2021; 73(6):1027-36. [
DOI:10.1093/cid/ciab232]
32. Kumar NP, Nancy A, Viswanathan V, Sivakumar S, Thiruvengadam K, Ahamed SF, et al. Chitinase and indoleamine 2, 3-dioxygenase are prognostic biomarkers for unfavorable treatment outcomes in pulmonary tuberculosis. Front Immunol. 2023; 14:1093640. [
DOI:10.3389/fimmu.2023.1093640]
33. Shi W, Wu J, Tan Q, Hu CM, Zhang X, Pan HQ, et al. Plasma indoleamine 2,3-dioxygenase activity as a potential biomarker for early diagnosis of multidrug-resistant tuberculosis in tuberculosis patients. Infect Drug Resist. 2019; 12:1265-76. [
DOI:10.2147/IDR.S202369]
34. Tornheim JA, Paradkar M, Zhao H, Kulkarni V, Pradhan N, Kinikar A, et al. The kynurenine/tryptophan ratio is a sensitive biomarker for the diagnosis of pediatric tuberculosis among Indian children. Front Immunol. 2022; 12:774043. [
DOI:10.3389/fimmu.2021.774043]
35. MacLean E, Broger T, Yerlikaya S, Fernandez-Carballo BL, Pai M, Denkinger CM. A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol. 2019; 4(5):748-58. [
DOI:10.1038/s41564-019-0380-2]
36. Kik SV, Denkinger CM, Casenghi M, Vadnais C, Pai M. Tuberculosis diagnostics: which target product profiles should be prioritised? Eur Respir J. 2014; 44(2):537-40. [
DOI:10.1183/09031936.00027714]
37. Biomarkers definitions working group. Biomarkers and surrogate endpoints. Clin Pharmacol Ther. 2001; 69(3):89-95. [
DOI:10.1067/mcp.2001.113989]
38. Wallis RS, Kim P, Cole S, Hanna D, Andrade BB, Maeurer M, et al. Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infect Dis. 2013; 13(4):362-72. [
DOI:10.1016/S1473-3099(13)70034-3]
39. Almeida AS, Lago PM, Boechat N, Huard RC, Lazzarini LCO, Santos AR, et al. Tuberculosis is associated with down-modulatory lung immune response that impairs Th1 Type Immunity. J Immunol. 2009; 183(1):718-31. [
DOI:10.4049/jimmunol.0801212]
40. Suzuki Y, Suda T, Asada K, Miwa S, Suzuki M, Fujie M, et al. Serum indoleamine 2,3-dioxygenase activity predicts prognosis of pulmonary tuberculosis. Clin Vaccine Immunol. 2012; 19(3):436-42. [
DOI:10.1128/CVI.05402-11]
41. Suzuki Y, Miwa S, Akamatsu T, Suzuki M, Fujie M, Nakamura Y, et al. Indoleamine 2,3-dioxygenase in the pathogenesis of tuberculous pleurisy. Int J Tuberc Lung Dis. 2013; 17(11):1501-6. [
DOI:10.5588/ijtld.13.0082]
42. Chen J, Xun J, Yang J, Ji Y, Liu L, Qi T, et al. Plasma indoleamine 2, 3-dioxygenase activity is associated with the size of the human immunodeficiency virus reservoir in patients receiving antiretroviral therapy. Clin Infect Dis. 2019; 68(8):1274-81. [
DOI:10.1093/cid/ciy676]
43. Adu-Gyamfi CG, Savulescu D, George JA, Suchard SM. Indoleamine 2, 3-dioxygenase-mediated tryptophan catabolism: a leading star or supporting act in the tuberculosis and HIV pas-de-deux?. Front Cell Infect Microbiol. 2019; 9:372. [
DOI:10.3389/fcimb.2019.00372]
44. WHO. High priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting. 28-29 April 2014; Geneva, Switzerland. Available from: https://www.who.int/publications/i/item/WHO-HTM-TB-2014.18
45. Yeung AWS, Terentis AC, King NJC, Thomas SR. Role of indoleamine 2, 3-dioxygenase in health and disease. Clin Sci. 2015; 129(7):601-72. [
DOI:10.1042/CS20140392]
46. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010; 185(6):3190-8. [
DOI:10.4049/jimmunol.0903670]
47. Desvignes L, Ernst JD. Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity. 2009; 31(6):974-85. [
DOI:10.1016/j.immuni.2009.10.007]
48. Blumenthal A, Nagalingam G, Huch JH, Walker L, Guillemin GJ, Smythe GA, et al. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection. PLoS one. 2012; 7(5):e37314. [
DOI:10.1371/journal.pone.0037314]
49. Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002; 196(4):447-57. [
DOI:10.1084/jem.20020052]
50. Williams AC, Dunbar RIM. Big brains, meat, tuberculosis, and the nicotinamide switches: co-evolutionary relationships with modern repercussions. Int J Tryptophan Res. 2013; 6:73-88. [
DOI:10.4137/IJTR.S12838]