Volume 28, Issue 1 (1-2024)                   IBJ 2024, 28(1): 31-37 | Back to browse issues page

Ethics code: IR.AJUMS.REC.1400.390

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadizadeh S, Hatami M, Salehipour Bavarsad S, Kabizade B, Shakerian E, Rashidi M. Curcumin Modulates NOX Gene Expression and ROS Production via P-Smad3C in TGF-β-Activated Hepatic Stellate Cells. IBJ 2024; 28 (1) :31-37
URL: http://ibj.pasteur.ac.ir/article-1-4005-en.html
Background: Liver fibrosis, associated with hepatic stellate cells (HSCs), occurs when a healthy liver sustains damage, thereby impairing its function. NADPH oxidases (NOXs), specifically isoforms 1, 2, and 4, play a role in reactive oxygen species (ROS) production during hepatic injuries, resulting in fibrosis. Curcumin has shown strong potential in mitigating liver fibrosis. Our research aimed to investigate the effects of curcumin on lowering NOX and ROS levels. This compound was also studied for its effects on NOXs, ROS concentrations through the inhibition of Smad3 phosphorylation in transforming growth factor beta (TGF-β)-activated human HSCs.
Methods: MTT assay investigated the cytotoxic effects of curcumin on HSCs. The cells were activated by exposure to TGF-β (2 ng/mL) for 24 hours. After activating, the cells were treated with curcumin at 25-150 μM concentrations. After administering curcumin to the cells, we employed RT-PCR and Western blot techniques to evaluate the related gene and protein expression levels. This evaluation was primarily focused on the mRNA expression levels of NOX1, NOX2, NOX4 and phosphorylated Smad3C.
Results: The mRNA expression level of aforesaid NOXs as well as α-smooth muscle actin (α-SMA), collagen1-α, and ROS levels were significantly reduced following 100 μM curcumin treatment. Furthermore, curcumin significantly decreased the p-Smad3C protein level in TGF-β-activated cells, with fold changes of 3 and 2 observed at 75 and 100 μM, respectively.
Conclusions: Curcumin decreased the levels of ROS and NOX, as well as the expression of α-SMA and collagen1-α. The primary mechanism for this reduction could be linked to the level of p-Smad3C. Hence, curcumin could serve as an effective therapeutic agent for liver fibrosis.
Type of Study: Full Length/Original Article | Subject: Related Fields

1. Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepato‐Biliary‐Pancreat Sci. 2015;22(7):512-8. [DOI:10.1002/jhbp.245]
2. Kietzmann T, Dimova E, Flügel D, Scharf JG. Oxygen: modulator of physiological and pathophysiological processes in the liver. Z Für Gastroenterol. 2006;44(01):67-76. [DOI:10.1055/s-2005-858987]
3. Afarin R, Rezaei HB, Yaghooti H, Mohammadtaghvaei N. Fibroblast Growth Factor 21 Reduces Cholesterol-Induced Hepatic Fibrogenesis by Inhibiting TGF-β/Smad3C Signaling Pathway in LX2 Cells. Hepat Mon. 2021;21(4). [DOI:10.5812/hepatmon.113321]
4. Bataller R, Brenner DA. Liver fibrosis. J Clin Incest. 2005;115(2):209-18. [DOI:10.1172/JCI24282]
5. Shi YF, Fong CC, Zhang Q, Cheung PY, Tzang CH, Wu RS, et al. Hypoxia induces the activation of human hepatic stellate cells LX-2 through TGF-β signaling pathway. FEBS lett. 2007;581(2):203-10. [DOI:10.1016/j.febslet.2006.12.010]
6. Carloni V, Luong TV, Rombouts K. Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: more complicated than ever. Liver Int. 2014;34(6):834-43. [DOI:10.1111/liv.12465]
7. Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324-32. [DOI:10.1038/nm1663]
8. Liu C, Chen X, Yang L, Kisseleva T, Brenner DA, Seki E. Transcriptional repression of the transforming growth factor β (TGF-β) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J Biol Chem. 2014;289(10):7082-91. [DOI:10.1074/jbc.M113.543769]
9. Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, et al. Exosomes derived from miR‐181‐5p‐modified adipose‐derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med. 2017;21(10): 2491-502. [DOI:10.1111/jcmm.13170]
10. Tamayo C, Diamond S. Review of clinical trials evaluating safety and efficacy of milk thistle (Silybum marianum [L.] Gaertn.). Integr Cancer Ther. 2007;6(2):146-57. [DOI:10.1177/1534735407301942]
11. Yoshida K, Murata M, Yamaguchi T, Matsuzaki K. TGF-β/Smad signaling during hepatic fibro-carcinogenesis. Int J Oncol. 2014;45(4):1363-71. [DOI:10.3892/ijo.2014.2552]
12. Liang S, Kisseleva T, Brenner DA. The role of NADPH oxidases (NOXs) in liver fibrosis and the activation of myofibroblasts. Front Physiol. 2016;7:17. [DOI:10.3389/fphys.2016.00017]
13. Parsons CJ, Takashima M, Rippe RA. Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol. 2007;22:S79-S84. [DOI:10.1111/j.1440-1746.2006.04659.x]
14. Lim C-S, Kim E-Y, Lee H-S, Soh Y, Sohn Y, Kim SY, et al. Protective effects of Cinnamomum cassia Blume in the fibrogenesis of activated HSC-T6 cells and dimethylnitrosamine-induced acute liver injury in SD rats. Biosci, Biotechnol, and Biochem. 2010:1001281834-. [DOI:10.1271/bbb.90435]
15. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, et al. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med. 2015;10(5):1615-23. [DOI:10.3892/etm.2015.2749]
16. Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325-48. [DOI:10.1111/bph.13621]
17. Chan WH, Wu HJ, Hsuuw YD. Curcumin inhibits ROS formation and apoptosis in methylglyoxal‐treated human hepatoma G2 cells. Ann N Y Acad Sci. 2005;1042(1):372-8. [DOI:10.1196/annals.1338.057]
18. Hatami M, Kouchak M, Kheirollah A, Khorsandi L, Rashidi MJB, Communications BR. Effective inhibition of breast cancer stem cell properties by quercetin-loaded solid lipid nanoparticles via reduction of Smad2/Smad3 phosphorylation and β-catenin signaling pathway in triple-negative breast cancer. Biochem Biophys Res Commun. 2023;664:69-76. [DOI:10.1016/j.bbrc.2023.03.077]
19. Zhang C-Y, Yuan W-G, He P, Lei J-H, Wang C-X. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol. 2016;22(48):10512. [DOI:10.3748/wjg.v22.i48.10512]
20. Lackner C, Tiniakos D. Fibrosis and alcohol-related liver disease. J Hepatol. 2019;70(2):294-304. [DOI:10.1016/j.jhep.2018.12.003]
21. Ganbold M, Shimamoto Y, Ferdousi F, Tominaga K, Isoda H. Antifibrotic effect of methylated quercetin derivatives on TGFβ-induced hepatic stellate cells. Biochem Biophys Rep. 2019;20:100678. [DOI:10.1016/j.bbrep.2019.100678]
22. Lin J, Tang Y, Kang Q, Chen AJLI. Curcumin eliminates the inhibitory effect of advanced glycation end-products (AGEs) on gene expression of AGE receptor-1 in hepatic stellate cells in vitro. Lab Invest. 2012;92(6):827-41. [DOI:10.1038/labinvest.2012.53]
23. Tang YJDD, Sciences. Curcumin targets multiple pathways to halt hepatic stellate cell activation: updated mechanisms in vitro and in vivo. Dig Dis Sci. 2015;60:1554-64. [DOI:10.1007/s10620-014-3487-6]
24. Xiao S, Deng Y, Shen N, Sun Y, Tang H, Hu P, et al. Curc-mPEG454, a PEGylated curcumin derivative, as a multi-target anti-fibrotic prodrug. Int Immunopharmacol. 2021;101:108166. [DOI:10.1016/j.intimp.2021.108166]
25. Lackner C, Tiniakos DJJoh. Fibrosis and alcohol-related liver disease. Journal of hepatology. 2019;70(2):294-304. [DOI:10.1016/j.jhep.2018.12.003]
26. Savcun GY, Ozkan E, Dulundu E, Topaloğlu U, Ozer Sehirli A, Enis Tok O, et al. Antioxidant and anti-inflammatory effects of curcumin against hepatorenal oxidative injury in an experimental sepsis model in rats. Ulus Travma Acil Cerrahi Derg. 2013;19(6):507-15. [DOI:10.5505/tjtes.2013.76390]
27. Hatami M, Kouchak M, Kheirollah A, Khorsandi L, Rashidi MJMBR. Quercetin-loaded solid lipid nanoparticles exhibit antitumor activity and suppress the proliferation of triple-negative MDA-MB 231 breast cancer cells: implications for invasive breast cancer treatment. Mol Biol Rep. 2023;50(11):9417-30. [DOI:10.1007/s11033-023-08848-w]
28. Hernández-Aquino E, Quezada-Ramírez MA, Silva-Olivares A, Ramos-Tovar E, Flores-Beltrán RE, Segovia J, et al. Curcumin downregulates Smad pathways and reduces hepatic stellate cells activation in experimental fibrosis. Ann Hepatol. 2020;19(5):497-506. [DOI:10.1016/j.aohep.2020.05.006]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb