Volume 28, Issue 4 (7-2024)                   IBJ 2024, 28(4): 214-220 | Back to browse issues page

Ethics code: IR.PII.REC.1399.057


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Panahi M, Teimoori A, Esmaeili S, Aminianfar H, Milani A, Hosseini S Y, et al . Stability of Neutralizing Antibody of PastoCoAd Vaccine Candidates against a Variant of Concern of SARS-CoV-2 in Animal Models. IBJ 2024; 28 (4) :214-220
URL: http://ibj.pasteur.ac.ir/article-1-3980-en.html
Abstract:  
Background: Since the beginning of the SARS-CoV-2 pandemic, there have been mutations caused by new SARS-CoV-2 variants, such as Alpha, Beta, Gamma, Delta, and Omicron, recognized as the variants of concern (VOC) worldwide. These variants can affect vaccine efficacy, disease control, and treatment effectiveness. The present study aimed to evaluate the levels of total and neutralizing antibodies produced by PastoCoAd vaccine candidates against the VOC strains at different time points.
Methods: Two vaccine candidates were employed against SARS-CoV-2 using adenoviral vectors: prime only (a mixture of rAd5-S and rAd5 RBD-N) and heterologous prime-boost (rAd5-S/SOBERANA vaccine). The immunogenicity of these vaccine candidates was assessed in mouse, rabbit, and hamster models using ELISA assay and virus neutralization antibody test.
Results: The immunogenicity results indicated a significant increase in both total and neutralizing antibodies titers in the groups receiving the vaccine candidates at various time points compared to the control group (p < 0.05). The results also showed that the PastoCoAd vaccine candidates Ad5 S & RBD-N and Ad5 S/SOBERANA could neutralize the VOC strains in the animal models.
Conclusion: The ability of vaccine candidate to neutralize the VOC strains in animal models by generating neutralizing antibodies at different time points may be attributed to the use of the platform based on the Adenoviral vector, the N proteins in the Ad5 S & RBD-N vaccine candidate, and the  SOBERANA Plus booster in the Ad5 S/SOBERANA vaccine candidate.

References
1. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020; 87(4):281-6. [DOI:10.1007/s12098-020-03263-6]
2. Fu Y, Jin H, Xiang H, Wang N. Optimal lockdown policy for vaccination during COVID-19 pandemic. Financ Res Lett. 2022; 45:102123. [DOI:10.1016/j.frl.2021.102123]
3. Hu J, Peng P, Cao X, Wu K, Chen J, Wang K, et al. Increased immune escape of the new SARS-CoV-2 variant of concern Omicron. Cell Mol Immunol. 2022; 19(2):293-5. [DOI:10.1038/s41423-021-00836-z]
4. Wratil PR, Stern M, Priller A, Willmann A, Almanzar G, Vogel E, et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat Med. 2022; 28(3):496-503. [DOI:10.1038/s41591-022-01715-4]
5. Mamedov T, Yuksel D, Ilgın M, Gürbüzaslan İ, Gulec B, Mammadova G, et al. Engineering, production and characterization of spike and nucleocapsid structural proteins of SARS-CoV-2 in Nicotiana benthamiana as vaccine candidates against COVID-19. Biorxiv. 2020; doi: ttps://doi.org/10.1101/2020.12.29.424779. [DOI:10.1101/2020.12.29.424779]
6. Silva EKVB, Bomfim CG, Barbosa AP, Noda P, Noronha IL, Fernandes BHV, et al. Immunization with SARS-CoV-2 nucleocapsid protein triggers a pulmonary immune response in rats. PLoS one. 2022; 17(5):e0268434. [DOI:10.1371/journal.pone.0268434]
7. Smits VAJ, Hernández-Carralero E, Paz-Cabrera MC, Cabrera E, Hernández-Reyes Y, Hernández-Fernaud JR, et al. The nucleocapsid protein triggers the main humoral immune response in COVID-19 patients. Biochem Biophys Res Commun. 2021; 543:45-9. [DOI:10.1016/j.bbrc.2021.01.073]
8. Salehi M, Hosseini H, Jamshidi HR, Jalili H, Tabarsi P, Mohraz M, et al. Assessment of BIV1-CovIran inactivated vaccine-elicited neutralizing antibody against the emerging SARS-CoV-2 variants of concern. Clin Microbiol Infect. 2022; 28(6):882.e1-882.e7. [DOI:10.1016/j.cmi.2022.02.030]
9. Hassan PM, Ali T, Saber E, Asghar A, Delaram D, Mostafa SV, et al. Potency, toxicity and protection evaluation of PastoCoAd candidate vaccines: Novel preclinical mix and match rAd5 S, rAd5 RBD-N and SOBERANA dimeric-RBD protein. Vaccine. 2022; 40(20):2856-68. [DOI:10.1016/j.vaccine.2022.03.066]
10. Vanaparthy R, Mohan G, Vasireddy D, Atluri P. Review of COVID-19 viral vector-based vaccines and COVID-19 variants. Infez Med. 2021; 29(3):328-38. [DOI:10.53854/liim-2903-3]
11. Garofalo M, Staniszewska M, Salmaso S, Caliceti P, Pancer KW, Wieczorek M, et al. Prospects of replication-deficient adenovirus based vaccine development against SARS-CoV-2. Vaccines (Basel). 2020; 8(2):293. [DOI:10.3390/vaccines8020293]
12. Chang-Monteagudo A, Ochoa-Azze R, Climent-Ruiz Y, Macías-Abraham C, Rodríguez-Noda L, Valenzuela-Silva C, et al. A single dose of SARS-CoV-2 FINLAY-FR-1A vaccine enhances neutralization response in COVID-19 convalescents, with a very good safety profile: An open-label phase 1 clinical trial. Lancet Reg Heal Am. 2021; 4:100079. [DOI:10.1016/j.lana.2021.100079]
13. Toyoshima Y, Nemoto K, Matsumoto S, Nakamura Y, Kiyotani K. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J Hum Genet. 2020; 65:1075-82. [DOI:10.1038/s10038-020-0808-9]
14. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021; 19(7):409-24. [DOI:10.1038/s41579-021-00573-0]
15. Kim JS, Jang JH, Kim JM, Chung YS, Yoo CK, Han MG. Genome-wide Identification and characterization of point mutations in the SARS-CoV-2 genome. Osong Public Heal Res Perspect. 2020; 11(3):101-11. [DOI:10.24171/j.phrp.2020.11.3.05]
16. Ikegame S, Siddiquey MNA, Hung CT, Haas G, Brambilla L, Oguntuyo KY, et al. Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants. Nat Commun. 2021; 12:4598. [DOI:10.1038/s41467-021-24909-9]
17. Jongeneelen M, Kaszas K, Veldman D, Huizingh J, van der Vlugt R, Schouten T, et al. Ad26.COV2.S elicited neutralizing activity against Delta and other SARS-CoV-2 variants of concern. BioRxiv. 2021; doi: 10.1101/2021.07.01.450707. [DOI:10.1101/2021.07.01.450707]
18. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021; 596(7871):276-80. [DOI:10.1038/s41586-021-03777-9]
19. Liu J, Liu Y, Xia H, Zou J, Weaver SC, Swanson KA, et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature. 2021; 596(7871):273-5. [DOI:10.1038/s41586-021-03693-y]
20. Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 2022; 602(7898):671-5. [DOI:10.1038/s41586-021-04389-z]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb