Volume 27, Issue 6 (11-2023)                   IBJ 2023, 27(6): 366-374 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Çelik İ, Durmuş E, Uysal A. Osteoproductivity in Experimentally Induced Cranial Bone Defects in Rabbits. IBJ 2023; 27 (6) :366-374
URL: http://ibj.pasteur.ac.ir/article-1-3940-en.html
Abstract:  
Background: Autogenous bone grafts are the gold standard for being used as graft materials in maxillofacial surgery. However, a limited amount of these materials is available from the donor site, and there is also more need for a larger operating area and a second surgery, which frequently leads to unreliable graft incorporation, tooth ankylosis, and root resorption. Therefore, newer bone graft substitutes have been developed as alternatives, among which eggshell powder has been introduced as a bone substitute. This study aimed to evaluate the biocompatibility, resorption kinetics, and osteoproductivity of the unprocessed, carboxymethyl cellulose (CMC)-coated, and gelatin-coated ostrich eggshell particles.
Methods: Four half-thickness calvarial defects were created in each animal. At the end of the 1st and 3rd months, the defected sites were investigated by clinical, histological, radiological and histomorphometrical methods.
Results: Coating the eggshell particles with CMC and gelatin facilitated their surgical application and contributed to new bone formation. However, their newly formed bone rate at the 3rd month was lower than those of the unprocessed eggshell particles. The CMC coating was more effective than gelatin coating in the bone modeling process.
Conclusion: Ostrich eggshell particles either in native form or coated with CMC could be used as a bone filler for supporting new bone formation and healing in treatment of osseous defects.

References
1. Velnar T, Bosnjak R, Garadisnik L. Clinical applications of poly-methyl-methacrylate in neurosurgery: The in vivo cranial bone reconstruction. Journal of functional biomaterials 2022: 13(3): 156. [DOI:10.3390/jfb13030156]
2. Durmus E, Celik I, Aydin MF, Yildirim G, Sur E. Evaluation of the biocompatibility and osteoproductive activity of ostrich eggshell powder in experimentally induced calvarial defects in rabbits. Journal of biomedical materials research part B: applied biomaterials 2008; 86(1): 82-89. [DOI:10.1002/jbm.b.30990]
3. Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clinical implant dentistry and related research 2003; 5(3): 154-160. [DOI:10.1111/j.1708-8208.2003.tb00197.x]
4. Durmus E, Celik I, Ozturk A, Ozkan Y, Aydin MF. Evaluation of the potential beneficial effects of ostrich eggshell combined with eggshell membranes in the healing of cranial defects in rabbits. Journalof international medical research 2003; 3: 223-230. [DOI:10.1177/147323000303100309]
5. Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone and joint journal 2016; 98-B(1 Suppl A): 6-9. [DOI:10.1302/0301-620X.98B.36350]
6. Valentini P, Abensur D. Maxillary sinus grafting with anorganic bovine bone: a clinical report of long-term results. The international journal of oral and maxillofacial implants 2003; 18: 556-560.
7. Dupoirieux L, Pourquier D, Picot MC, Neves M. Comparative study of three different membranes for guided bone regeneration of rat calvarial defects. International journal of oral and maxillofacial surgery 2001; 30(1): 58-62. [DOI:10.1054/ijom.2000.0011]
8. Mann K, Siedler F. Ostrich (Struthio camelus) eggshell matrix contains two different C-type lectin-like proteins. Isolation, amino acid sequence, and posttranslational modifications. Biochimica et biophysica acta 2004; 1696(1): 41-50. [DOI:10.1016/j.bbapap.2003.09.006]
9. Dupoirieux L, Pourquier D, Picot MC, Neves M, Téot L. Resorption kinetics of eggshell: an in vivo study. The journal of craniofacial surgery 2001; 12(1): 53-58. [DOI:10.1097/00001665-200101000-00009]
10. Dupoirieux L, Pourquier D, Souyris F. Powdered eggshell: a pilot study on a new bone substitute for use in maxillofacial surgery. Journal of cranio-maxillofacial surgery 1995; 23(3): 187-194. [DOI:10.1016/S1010-5182(05)80009-5]
11. Caliman LB, da Silva SN, Junkes JA, Della Sagrillo VP. Ostrich eggshell as an alternative source of calcium ions for biomaterials synthesis. Materials research 2017; 20: DOI: 10.1590/1980-5373-MR-2016-0368. [DOI:10.1590/1980-5373-mr-2016-0368]
12. Ghomi ER, Nourbakhsh N, Kenari MA, Zare M, Ramakrishna S. Collagen-based biomaterials for biomedical applications. Journal of biomedical materials research Part B: applied biomaterials 2021; 109(12): 1986-1999. [DOI:10.1002/jbm.b.34881]
13. Lee CH, Singla A, Lee Y. Biomedical applications of collagen. International journal of pharmacology 2001; 221(1-2): 1-22. [DOI:10.1016/S0378-5173(01)00691-3]
14. Suppa P, Ruggeri A, Tay FR, Prati C, Biasotto M, Falconi M, Pashley DH, Breschi L. Reduced antigenicity of type I collagen and proteoglycans in sclerotic dentin. The journal of dental research 2006; 85(2): 133-137. [DOI:10.1177/154405910608500204]
15. Lynn AK, Yannas LV, Bonfield W. Antigenicity and immunogenicity of collagen. Journal of biomedical materials research part B: applied biomaterials 2004; 2: 343-354. [DOI:10.1002/jbm.b.30096]
16. Liu HW, Su WT, Liu Huang C, Huang CC. Highly organized porous gelatin-based scaffold by microfluidic 3D-foaming technology and dynamic culture for cartilage tissue engineering. International journal of molecular sciences 2022; 23(15): 8449. [DOI:10.3390/ijms23158449]
17. Dubruel P, Unger R, Van Vlierberghe S, Cnudde V, Jacobs PJS, Schacht E, Kirkpatrick CJ. Porous gelatin hydrogels: 2. In vitro cell interaction study. Biomacromoles 2007; 8(2): 338-344. [DOI:10.1021/bm0606869]
18. Taylor PM, Cass AEG, Yacoub MH. Extracellular matrix scaffolds for tissue engineering heart valves. Progress in pediatric cardiology 2006; 21(2): 219-225. [DOI:10.1016/j.ppedcard.2005.11.010]
19. Gorgieva S, Kokol V. Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives. Biomaterials applications for nanomedicine 2011; DOI: 10.5772/24118. [DOI:10.5772/24118]
20. Sohn DS, Moon JW, Moon KN, Cho SC, Kang PS. New bone formation in the maxillary sinus using only absorbable gelatin sponges. The journal of oral and maxillofacial surgery 2010; 68(6): 1327-1333. [DOI:10.1016/j.joms.2010.02.014]
21. Lioubavina-Hack N, Karring T, Lynch SE, Lindhe J. Methyl cellulose gel obstructed bone for mation by G BR: an experimental study in rats. Journal of clinical periodontology 2005; 32(12): 1247-1253. [DOI:10.1111/j.1600-051X.2005.00791.x]
22. Verna C, Bosch C, Dalstra M, Wikesjö UME, Trombelli L, Bosch C. Healing patterns in calvarial bone defects following guided bone regeneration in rats. A micro-CT scan analysis. Journal of clinical periodontology 2002; 29(9): 865-870. [DOI:10.1034/j.1600-051X.2002.290912.x]
23. Krithiga G, Sastryt P. Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder. The bulletin of materials science 2011; 34: 177-181. [DOI:10.1007/s12034-011-0044-1]
24. Redondo LM, Cantera JMG, Hernândez AV, Puerta CV. Effect of particulate porous hydroxyapatite on osteoinduction of demineralized bone autografts in expeonmential reconstruction of the rat mandible. International journal of oral and maxillofacial surgery 1995; 24(6): 445-448. [DOI:10.1016/S0901-5027(05)80475-8]
25. Aaboe M, Pinholt ME, Hjorting-Hansen E. Healing of experimentally created defects: a review. British journal of oral and maxillofacial surgery 1995; 33(5): 312-318. [DOI:10.1016/0266-4356(95)90045-4]
26. Keipert S, Voigt R. Interactions between macromolecular adjuvants and drugs. Part 18: The binding behaviour of sodium carboxymethylcellulose and other macro-molecules towards streptomycin sulphfate. Pharmazie 1979; 34(9): 548-551.
27. Seto I, Asahina I, Oda M, Enomoto S. Reconstruction of the primate mandible with a combination graft of recombinant human bone morpghogenetic protein-2 and bone marrow. Journal of oral and maxillofacial surgery 2001; 59(1): 53-61. [DOI:10.1053/joms.2001.19286]
28. Ferreira JRM, Louro LHL, Costa AM, de Campos JB, Prado da Silva MH. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite, and hydroxyapatite partially substituted with zinc. Cerâmica 2016; 62(364): 386-391. [DOI:10.1590/0366-69132016623642002]
29. Park JW, Jang JH, Bae SR, An CH, Suh JY. Bone formation with various bone graft substitutes in a critical-sized rat calvarial defect. Clinical oral implants research 2009; 20(4): 372-378. [DOI:10.1111/j.1600-0501.2008.01602.x]
30. Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, Lee CS. Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. Journal of biomedical materials research part A 2008; 87(1): 203-214. [DOI:10.1002/jbm.a.31768]
31. Luttikhuizen DT, Harmsen MC, Van Luyn MJA. Cellular and molecular dynamics in the foreign body reaction. Tissue engineering 2006; 12(7): 1955-1970. [DOI:10.1089/ten.2006.12.1955]
32. Rouahi M, Gallet O, Champion E, Dentzer J, Hardouin P, Anselme K. Influence of hydroxyapatite microstructure on human bone cell response. Journal of biomedical materials research part A 2006; 78(2): 222-235. [DOI:10.1002/jbm.a.30682]
33. Hench LL. Biomaterials: a forecast for the future. Biomaterials 1998; 19(16): 1419-1423. [DOI:10.1016/S0142-9612(98)00133-1]
34. Hatano N, Shimizu Y, and Ooya K. A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with 2:1 autogenous bone/xenograft mixture and simultaneous placement of dental implants. Clinical oral implants research 2004; 15(3):339-345. [DOI:10.1111/j.1600-0501.2004.00996.x]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb