Volume 28, Issue 1 (1-2024)                   IBJ 2024, 28(1): 38-45 | Back to browse issues page

Ethics code: 2014-002/12.02.2014

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

İlik M B, Durmuş E, Çelik İ. Biocompatibility and Osseointegration of the Biomimetically Coated and Water-Soluble Eggshell Membrane Protein Cross-Linked Ti Alloy Screws. IBJ 2024; 28 (1) :38-45
URL: http://ibj.pasteur.ac.ir/article-1-3939-en.html
Background: The surface properties of dental and orthopedic implants are directly related to their osseointegration rate. Coating and/or modifying the implant surface might reduce the time of healing. In this study, we aimed to examine the effects of a hybrid surface consisting of a brushite surface coating and cross-linked water-soluble eggshell membrane protein on the osseointegration of titanium (Ti) screws under in vivo conditions.
Methods:  Twenty Ti alloy screws were implanted monocortically in anteromedial regions of New Zealand rabbit tibiae. Ten screws were untreated and used as controls. The remaining 10 screws were coated with calcium phosphate and following cross-linked with ostrich eggshell membrane protein. All rabbits were sacrificed six weeks after the surgery. Peri-screw tissues were evaluated by micro-computed tomography (µ-CT), histological and histomorphometrical methods. 
Results: The μ-CT assessments indicated that the experimental group had significantly higher mean bone surface area (BSA) and trabeculae number (TbN) than those of the control group (p ˂ 0.05). Bone surface area (BV), trabecular separation (TbSp), trabecular thickness (TbTh), and bone mineral density (BMD) scores of the control and experimental groups were quite similar (p > 0.05). The vascularization score of the experimental group was significantly higher than the control group (4.29 vs. 0.92%). No sign of the graft-versus-host reaction was observed.
Conclusion:  Our findings reveal that coating Ti alloy implants with calcium phosphate cross-linked with ostrich eggshell membrane protein increases the osseointegration of Ti alloy screws by increasing the bone surface area, number of trabeculae and vascularization in the implant site.

1. Williams DF. The Williams Dictionary of Biomaterials. Liverpool: Liverpool University Press; 1999.
2. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991; 74(7): 1487-510. [DOI:10.1111/j.1151-2916.1991.tb07132.x]
3. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002; 395:81-98. [DOI:10.1097/00003086-200202000-00009]
4. Habibovic P, Li J, van der Valk CM, Meijer G, Layrolle P, van Blitterswijk CA, et al. Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials. 2005; 26(1): 23-36. [DOI:10.1016/j.biomaterials.2004.02.026]
5. Reis RL, Román JS. Biomimetic Coatings, Proteins, and Biocatalysts: A New Approach to Tailor the Properties of Biodegradable Polymers. In: Reis RL, Román JS, editors. Biodegradable Systems in Tissue Engineering and Regenerative Medicine. Boca Raton: CRC Press; 2004. p. 1-10.
6. Alberts B, Johnson AD, Morgan D, Roberts K, Walter P, Raff MC, et al. Cell Junctions, Cell Adhesion, and the Extracellular Matrix. In: Molecular Biology of the Cell. 4th ed. New York: Garland Science; 2002.
7. Nyman JS, Reyes M, Wang X. Effect of ultrastructural changes on the toughness of bone. Micron. 2005; 36(7-8):566-82. [DOI:10.1016/j.micron.2005.07.004]
8. Nakano T, Ikawa NI, Ozimek L. Chemical composition of chicken eggshell and shell membranes. Poultry Sci. 2003; 82(3):510-14. [DOI:10.1093/ps/82.3.510]
9. Arias JL, Fernandez MS, Dennis JE, Caplan AI. Collagens of the chicken eggshell membranes. Connect Tissue Res. 1991; 26(1-2):37-45. [DOI:10.3109/03008209109152162]
10. Nys Y, Gautron J, McKee MD, Garcia Ruiz JM, Hincke MT. Biochemical and functional characteriszation of eggshell matrix proteins in hens. Poult Sci J. 2001; 57(4):401-13. [DOI:10.1079/WPS20010029]
11. Wong M, Hendrix MJ, von der Mark K, Little C, Stern R. Collagen in the eggshell membranes of the hen. Dev Biol. 1984; 104(1):28-36. [DOI:10.1016/0012-1606(84)90033-2]
12. Yi F, Guo ZX, Zhang LX, Yu J, Li Q. Soluble eggshell membrane protein: preparation, characterization, and biocompatibility. Biomaterials. 2004; 25(19):4591-9. [DOI:10.1016/j.biomaterials.2003.11.052]
13. Takahashi K, Shirai K, Kitamura M, Hattori M. Soluble eggshell membrane protein as a regulating material for collagen matrix reconstruction. Biosci Biotechnol Biochem. 1996; 60(8):1299-302. [DOI:10.1271/bbb.60.1299]
14. Jia J, Duan YY, Yu J, Lu JW. Preparation and immobilization of soluble eggshell membrane protein on the electrospun nanofibers to enhance cell adhesion and growth. J Biomed Mater Res A. 2008; 86(2):364-73. [DOI:10.1002/jbm.a.31606]
15. Jia J, Liu G, Guo ZX, Yu J, Duan Y. Preparation and characterization of soluble eggshell membrane protein/PLGA electrospun nanofibers for guided tissue regeneration membrane. J Nanomater. 2012; Article ID: 282736 1-7. [DOI:10.1155/2012/282736]
16. Lu JW, Li Q, Qi Q, Guo Z, Yu J. Surface engineering of poly (D, L-lactic acid) by entrapment of soluble eggshell membrane protein. J Biomed Mater Res A. 2009; 91(3):701-7. [DOI:10.1002/jbm.a.32304]
17. Rentsch C, Schneiders W, Manthey S, Rentsch B, Rammelt S. Comprehensive histological evaluation of bone implants. Biomatter. 2014; 4:e27993. [DOI:10.4161/biom.27993]
18. Tas AC, Bhaduri SB. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10X simulated body fluid. JMR. 2004; 19:2742-9. [DOI:10.1557/JMR.2004.0349]
19. Biemond JE, Eufrasio TS, Hannink G, Verdonschot N, Buma P. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures. J Mater Sci Mater Med. 2011; 22(4):917-25. [DOI:10.1007/s10856-011-4256-0]
20. Reigstad O, Franke Stenport V, Johansson CB, Wennerberg A, Rokkum M, Reigstad A. Improved bone ingrowth and fixation with a thin calcium phosphate coating intended for complete resorption. J Biomed Mater Res B Appl Biomater. 2007; 83(1): 9-15. [DOI:10.1002/jbm.b.30762]
21. Reigstad O, Johansson C, Stenport V, Wennerberg A, Reigstad A, Rokkum M. Different patterns of bone fixation with hydroxyapatite and resorbable CaP coatings in the rabbit tibia at 6, 12, and 52 weeks. J Biomed Mater Res B Appl Biomater. 2011; 99(1): 14-20. [DOI:10.1002/jbm.b.31866]
22. Salama A, El Sakhawy M. Preparation of polyelectrolyte/calcium phosphate hybrids for drug delivery application. Carbohydr Polym. 2014; 113:500-6. [DOI:10.1016/j.carbpol.2014.07.022]
23. Tamimi F, Kumarasami B, Doillon C, Gbureck U, Le Nihouannen D, Cabarcos EL, et al. Brushite collagen composites for bone regeneration. Acta Biomater. 2008; 4(5):1315-21. [DOI:10.1016/j.actbio.2008.04.003]
24. Li X, Xie J, Yuan X, Xia Y. Coating electrospun poly (epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir. 2008; 24(24):14145-50. [DOI:10.1021/la802984a]
25. Narbat M, Orang F, Hashtjin M, Hashtjin MS, Goudarzi A. Fabrication of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering. Iran Biomed J. 2006; 10(4): 215-23.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb