Volume 27, Issue 4 (7-2023)                   IBJ 2023, 27(4): 173-182 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

shokri F, Mozdarani H, Omrani M D. Rel-A/PACER/miR 7 Axis May Play a Role in Radiotherapy Treatment in Breast Cancer Patients. IBJ 2023; 27 (4) :173-182
URL: http://ibj.pasteur.ac.ir/article-1-3901-en.html
Background: Radiotherapy has become the standard form of treatment for breast cancer (BC). Radioresistance is an issue that limits the effectiveness of radiotherapy (RT). Therefore, predictive biomarkers are needed to choose the appropriate RT for the patient. Activation of the proinflammatory transcription factor, nuclear factor-kappa B (NF-κB), is a frequently noted pathway in BC. Investigating the relationship between RT and alterations in gene expression involved in the immune pathway can help better control the disease. This research investigated the impact of RT on the expression levels of Rel-A, PACER, and miR-7 within the NF-κB signaling pathway.
Methods: Blood samples (n = 15) were obtained from BC patients during four different time intervals: 72 hours prior to initiating RT, as well as one, two, and four weeks following RT completion. Samples were also collected from 20 healthy women who had no immune or cancer-related diseases. Blood RNA was extracted, and complementary DNA was synthesized. Gene expression level was determined using R real-time polymerase chain reaction (RT-PCR).
Results:  There was a significant difference in the expression level of Rel-A between patients and normal individual blood samples (p < 0.05). After four weeks of RT, qRT-PCR revealed a significant downregulation of miR-7 and upregulation of Rel-A and PACER in BC patients. Also, there was a significant association between Rel-A expression and monocyte numbers during RT
(p < 0.001).

Conclusion: The expression level of PACER, miR-7 and Rel-A, changed after RT; therefore, these genes could be used as diagnostic and therapeutic RT markers in BC.

1. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-899. [DOI:10.1016/j.cell.2010.01.025]
2. Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Molecular cancer research 2006; 4(4): 221-233. [DOI:10.1158/1541-7786.MCR-05-0261]
3. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357(9255): 539-545. [DOI:10.1016/S0140-6736(00)04046-0]
4. Chen LF, Greene WC. Shaping the nuclear action of NF- kappaB. Nature reviews molecular cell biology 2004; 5(5): 392-401. [DOI:10.1038/nrm1368]
5. Radhakrishnan SK, Kamalakaran S. Pro-apoptotic role of NF-κB: implications for cancer therapy. Biochimica et biophysica acta 2006; 1766(1): 53-62. [DOI:10.1016/j.bbcan.2006.02.001]
6. Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer letters 2004; 206(2): 193-199. [DOI:10.1016/j.canlet.2003.08.029]
7. Van Laere SJ, Van der Auwera I, Van den Eynden GG, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY. NF-kB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. British journal of cancer 2007; 97(5): 659-669. [DOI:10.1038/sj.bjc.6603906]
8. Shostak K, Chariot A. NF-κB, stem cells and breast cancer: the links get stronger. Breast cancer research 2011; 13(4): 1-7. [DOI:10.1186/bcr2886]
9. Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries 2015; 3(1): e35. [DOI:10.15190/d.2015.27]
10. Aggarwal BB: Nuclear factor-kappaB the enemy within. Cancer Cell 2004; 6(3): 203-208. [DOI:10.1016/j.ccr.2004.09.003]
11. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nature reviews cancer 2002; 2(4): 301-310. [DOI:10.1038/nrc780]
12. Cao Y, Karin M. NF-kappaB in mammary gland development and breast cancer. Journal of mammary gland biology and neoplasia 2003; 8(2): 215-223. [DOI:10.1023/A:1025905008934]
13. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. The journal of clinical investigation 2004; 114(4): 569-581. [DOI:10.1172/JCI200421358]
14. Krawczyk M, Emerson BM. p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. Elife 2014; 3: e01776. [DOI:10.7554/eLife.01776]
15. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal transduction and targeted therapy 2020; 5(1): 209. [DOI:10.1038/s41392-020-00312-6]
16. Lee KM, Choi EJ, Kim IA. MicroRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiotherapy and Oncology 2011; 101(1): 171-176. [DOI:10.1016/j.radonc.2011.05.050]
17. Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AWM, Klijn JGM, Wiemer EAC, Martens JWM. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proceedings of the National Academy of Sciences of the United States of America 2008; 105(35): 13021-13026. [DOI:10.1073/pnas.0803304105]
18. Zhang H, Cai K, Wang J, Wang X, Cheng K, Shi F, Jiang L, Zhang Y, Dou J. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells 2014; 32(11): 2858-2868. [DOI:10.1002/stem.1795]
19. Shi Y, Luo X, Li P, Tan J, Wang X, Xiang T, Ren G. MiR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGgamma. Cancer letters 2015; 358(1): 27-36. [DOI:10.1016/j.canlet.2014.12.014]
20. Li M, Pan M, Wang J, You C, Zhao F, Zheng D, Guo M, Xu H, Wu D, Wang L, Dou J. MiR-7 reduces breast cancer stem cell metastasis via inhibiting RELA to decrease ESAM expression. Molecular therapy-oncolytics 2020; 18: 70-82. [DOI:10.1016/j.omto.2020.06.002]
21. Ahmed KM, Li JJ. NF-κB-mediated adaptive resistance to ionizing radiation. Free radical biology and medicine 2008; 44(1): 1-13. [DOI:10.1016/j.freeradbiomed.2007.09.022]
22. Paterson R, Marion FSS, Russel MH. Clinical trials in malignant disease: Part III-breast cancer: evaluation of post-operative radiotherapy. Journal of the Faculty of Radiologists 1959; 10(4): 175-180. [DOI:10.1016/S0368-2242(59)80048-8]
23. Stjern J. Decreased survival related to irradiation postoperatively in early operable breast cancer. Lancet 1974; 2(7892): 1285-1286. [DOI:10.1016/S0140-6736(74)90142-1]
24. Cuzick J, Stewart HJ, Peto R, Baum M, Fisher B, Host H, Lythgoe JP, Ribeiro G, Scheurlen H, Wallgren A. Overview of randomized trials of postoperative adjuvant radiotherapy in breast cancer. Recent results in cancer research. 1988; 111: 108-129. [DOI:10.1007/978-3-642-83419-6_15]
25. Wang Y, Meng A, Lang H, Brown SA, Konopa JL, Kindy MS, Schmiedt RA, Thompson JS, Zhou D. Activation of nuclear factor kappaB in vivo selectively protects the murine small intestine against ionizing radiation-induced damage. Cancer research 2004; 64(17): 6240-6246. [DOI:10.1158/0008-5472.CAN-04-0591]
26. Dellegrottaglie S, Sanz J, Rajagopalan S. Molecular determinants of vascular calcification: a bench to bedside view. Current molecular medicine 2006; 6(5): 515-524. [DOI:10.2174/156652406778018653]
27. Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. NF-κB in cancer therapy. Archives of toxicology 2015; 89(5): 711-731. [DOI:10.1007/s00204-015-1470-4]
28. Orlowski RZ, Baldwin AS Jr. NF-kappaB as a therapeutic target in cancer. Trends in molecular medicine 2002; 8(8): 385-389. [DOI:10.1016/S1471-4914(02)02375-4]
29. Kufe D, Weichselbaum R. Radiation therapy: activation of gene transcription and the development of genetic radiotherapy - therapeutic strategies in oncology. Cancer biology and therapy 2003; 2(4): 326-329. [DOI:10.4161/cbt.2.4.495]
30. Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M, Lin A. Inhibition of JNK activation through NF-kappaB target genes. Nature 2001; 414(6861): 313-317. [DOI:10.1038/35104568]
31. Chen X, Shen B, Xia L, Khaletzkiy A, Chu D, Wong JYC, Li JJ. Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer research 2002; 62(4): 1213-1221.
32. Fan M, Ahmed KM, Coleman MC, Spitz DR, Li JJ. NF-kappaB and MnSOD mediate adaptive radioresistance in low dose irradiated mouse skin epithelial cells. Cancer research 2007; 67(7): 3220-3228. [DOI:10.1158/0008-5472.CAN-06-2728]
33. Guo G, Yan-Sanders Y, Lyn-Cook BD, Wang T, Tamae D, Ogi J, Khaletskiy A, Li Z, Weydert C, Longmate JA, Huang TT, Spitz DR, Oberley LW, Li JJ. Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Molecular and cellular biology 2003; 23(7): 2362-2378. [DOI:10.1128/MCB.23.7.2362-2378.2003]
34. Ahmed KM, Cao N, Li JJ. HER-2 and NF-kappaB as the targets for therapy-resistant breast cancer. Anticancer research 2006; 26: 4235-4243.
35. Guo G, Wang T, Gao Q, Tamae D, Wong P, Chen T, Chen WC, Shively JE, Wong JYC, Li JJ. Expression of ErbB2 enhances radiation-induced NF-kappaB activation. Oncogene 2004; 23(2): 535-545. [DOI:10.1038/sj.onc.1207149]
36. Zhou R, Gong AY, Chen D, Miller RE, Eischeid AN, Chen XM. Histone deacetylases and NF-kB signaling coordinate expression of CX3CL1 in epithelial cells in response to microbial challenge by suppressing miR-424 and miR-503. PLoS one 2013; 8(5): e65153. [DOI:10.1371/journal.pone.0065153]
37. Zhao Y, Liu H, Li Y, Wu J, Greenlee AR, Yang C, Jiang Y. The role of miR-506 in transformed 16HBE cells induced by anti-benzo [a] pyrene- trans-7, 8-dihydrodiol-9, 10-epoxide. Toxicology letters 2011; 205(3): 320-326. [DOI:10.1016/j.toxlet.2011.06.022]
38. Incoronato M, Urso L, Portela A, Laukkanen MO, Soini Y, Quintavalle C, Keller S, Esteller M, Condorelli G. Epigenetic regulation of miR-212 expression in lung cancer. PLoS one 2011; 6(11): e27722. [DOI:10.1371/journal.pone.0027722]
39. Cai SD, Chen JS, Xi ZW, Zhang LJ, Niu ML, Gao ZY. MicroRNA 144 inhibits migration and proliferation in rectal cancer by downregulating ROCK 1. Molecular medicine report 2015; 12(5): 7396-7402. [DOI:10.3892/mmr.2015.4391]
40. Liao WT, Ye YP, Zhang NJ, Li TT, Wang SY, Cui YM, Qi L, Wu P, Jiao HL, Xie YJ, Zhang C, Wang JX, Ding YQ. MicroRNA‐30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2. The Journal of pathology 2014; 232(4): 415-427. [DOI:10.1002/path.4309]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb