Volume 26, Issue 3 (5-2022)                   IBJ 2022, 26(3): 183-192 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zuñiga E, Ramírez O, Martínez C. Electrophysiological Recordings from Embryonic Mouse Motoneurons Cultured on Electrospun Poly-Lactic Acid (PLA) and Polypyrrole-Coated PLA Scaffolds. IBJ 2022; 26 (3) :183-192
URL: http://ibj.pasteur.ac.ir/article-1-3479-en.html
Background: Biomaterials used as cell growth stimulants should be able to provide adequate cell adhesion with no alteration in cell function. In this work, we developed a three-dimensional model of mouse spinal cord motoneurons on scaffolds composed of electrospun poly-lactic acid (PLA) fibers and plasma-polymerized polypyrrole (PPy)-coated PLA fibers.
Methods: The functionality of the cultured motoneurons was assessed by evaluating both the electrophysiological response (i.e., the whole-cell Na+ and K+ currents and the firing of action potentials) and also the expression of the vesicular acetylcholine transporter (VAChaT) by immunostaining techniques. While the expression of the VAChaT was confirmed on motoneurons cultured on the fibrous scaffolds, the electrophysiological responses indicated Na+ and K+ currents with lower amplitude and slower action potentials when compared to the response recorded from spinal cord motoneurons cultured on Poly-DL-Ornithine/Laminin- and plasma-polymerized PPy-coated coverslips.
Results: From a morphological viewpoint, motoneurons cultured on PLA and PPy-coated PLA scaffolds did not show the development of dendritic and/or axonal processes, which were satisfactorily observed in the bidimensional cultures.
Conclusion: We hypothesize that the apparently limited development of dendritic and/or axonal processes could produce a deleterious effect on the electrophysiological response of the cells, which might be due to the limited growth surface available in the fibrous scaffolds and/or to an undesired effect of the purification process.

1. Qutub A, Popel A. Elongation, proliferation and migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC systems biology 2009; 3: 13. [DOI:10.1186/1752-0509-3-13]
2. Ayala P, Lopez J, Desai T. Microtopographical cues in 3D attenuate fibrotic phenotype and extracellular matrix deposition: implications for tissue regeneration. Tissue engineering. Part A 2010; 16(8): 2519-2527. [DOI:10.1089/ten.tea.2009.0815]
3. Bott K, Upton Z, Schrobback K, Ehrbar M, Hubbell J, Lutolf M. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 2010; 31(32): 8454-8464. [DOI:10.1016/j.biomaterials.2010.07.046]
4. Li C, Tian T, Nan K, Zhao N, Guo Y, Cui J. Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro. Oncology reports 2008; 20(6): 1465-1471.
5. Myers T, Nickerson C, Kaushal D, Otte C, Bentrup K, Ramamurthy R, Nelman M, Pierson D, Philipp M. Closing the phenotypic gap between transformed neuronal cell lines in culture and untransformed neurons. Journal of neuroscience methods 2008; 174(1): 31-41. [DOI:10.1016/j.jneumeth.2008.06.031]
6. Irons H, Cullen D, Shapiro N, Lambert N, Lee R, LaPlaca M. Three-dimensional neural constructs: a novel platform for neurophysiological investigation. Journal of neural engineering 2008; 5(3): 333-341. [DOI:10.1088/1741-2560/5/3/006]
7. Yang F, Murugan R, Wang S, Ramakrishn S. Electrospinning of nano/micro scale poly(L- lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26(15): 2603-2610. [DOI:10.1016/j.biomaterials.2004.06.051]
8. Corey JM, Gertz CC, Bor-Shuen W, Birrell LK, Johnson SL, Martin DC, Feldman LF. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons. Acta biomaterialia 2008; 4(4): 863-875. [DOI:10.1016/j.actbio.2008.02.020]
9. Fabela-Sánchez O, Salgado-Ceballos H, Medina-Torres L, Álvarez-Mejía L, Sánchez- Torres S, Mondragon-Lozano R, Morales-Guadarrama A, Diaz-Ruiz A, Olayo MG, Guillermo J. Cruz G, Morales-Corona J, Ríos C, Olayo R. Effect of the combined treatment of albumin with plasma synthesised pyrrole polymers on motor recovery after traumatic spinal cord injury in rats. Journal of materials science materials in medicine 2018; 29(1): 13. [DOI:10.1007/s10856-017-6016-2]
10. Lee J, Cuddihy M, Kotov N. Three-Dimensional Cell Culture Matrices: State of the Art. Tissue engineering part B: reviews 2008; 14(1): 61-86. [DOI:10.1089/teb.2007.0150]
11. Cukierman E, Pankov R, Yamada KM. Cell interactions with three-dimensional matrices. Current opinion in cell biology 2002; 14(5): 633-639. [DOI:10.1016/S0955-0674(02)00364-2]
12. Xie J, MacEwan M, Schwartz A, Xia Y. Electrospun nanofibers for neural tissue engineering. Nanoscale 2010; 2(1):35-44. [DOI:10.1039/B9NR00243J]
13. Cao H, Liu T, Chew S. The application of nanofibrous scaffolds in neural tissue engineering. Advanced drug delivery reviews 2009; 61(15): 1055-1064. [DOI:10.1016/j.addr.2009.07.009]
14. Subramanian A, Maheswari KU, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of biomedical science 2009; 16(1): 108. [DOI:10.1186/1423-0127-16-108]
15. Yao L, O'Brien N, Windebank A, Pandit A. Orienting neurite growth in electrospun fibrous neural conduits. Journal of biomedical materials research part B: applied biomaterials 2009; 90(2): 483-491. [DOI:10.1002/jbm.b.31308]
16. Olayo R, Ríos C, Salgado CH, Morales J. Tissue spinal cord response in rats after implants of polypirrole and polyethylene glycol obtained by plasma. Journal of materials science: materials in medicine 2008; 19(2): 817-826. [DOI:10.1007/s10856-007-3080-z]
17. Zuñiga-Aguilar E, Godinez R, Morales MA, Cifuentes F, Ramírez-Fernández O, Morales J, Olayo R. Crecimiento de células nerviosas motoras
18. sobre material modificado superficialmente por polimerización por plasma. IFMBE proceedings 2013; 33: 120-123. [DOI:10.1007/978-3-642-21198-0_31]
19. Zuñiga-Aguilar E, Olayo R, Ramírez-Fernández O, Morales J, Godínez R. Nerve cells culture from lumbar spinal cord on surfaces modified by plasma pyrrole polymerization. Journal of biomaterials science. Polymer edition 2014; 25(7): 729-747. [DOI:10.1080/09205063.2014.898124]
20. Pérez-Tejada E, Morales-Corona J, Gómez-Quiróz LE, Gutierrez-Ruiz MC, Olayo R. Effect of synthesis variables of plasma synthesized polymers on growth of HepG2 cells. Biocell 2018; 41(2-3): 41-43. [DOI:10.32604/biocell.2017.00041]
21. Ramírez - Fernández O, Godínez R, Morales J, Gómez-Quiroz L, Gutiérrez-Ruiz MC, Zuñiga-Aguilar E, Olayo R. Superficies modificadas mediante polimerización por plasma para cocultivos de modelos hepáticos. Revista mexicana de ingeniería biomédica 2012; 33(2): 127-135.
22. Cruz JG, Mondragón-Lozano G, Díaz-Ruiz A, Manjarrez J, Olayo R, Salgado-Ceballos H, Olayo MG, Morales J, Alvarez-Mejía L, Morales A, Méndez-Armenta M, Plascencia N, Fernández M, Ríos C. Plasma polypyrrole implants recover motor function in rats after spinal cord transection. Journal of materials science: materials in medicine 2012; 23(10): 2583-2592. [DOI:10.1007/s10856-012-4715-2]
23. Dhillon A, Kaur A, Srivastava AK, Avasthi DK. Experimental investigations of semi-crystalline plasma polymerized polypyrrole for surface coating. Progress in organic coatings 2010; 69(4): 396-401. [DOI:10.1016/j.porgcoat.2010.08.002]
24. Zhang J, Wu MZ, Pu TS, Zhang ZY, Jin RP, Tong ZS, Zhu DZ, Cao DX, Zhu FY, Cao JQ. Investigation of the plasma polymer deposited from pyrrole. Thin solid films 1997; 307(2): 14-20. [DOI:10.1016/S0040-6090(97)00271-X]
25. Wang J, Neoh KG, Kang ET. Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. Thin solid films 2004; 446(2): 205-217. [DOI:10.1016/j.tsf.2003.09.074]
26. Serratos IN, Olayo R, Millán-Pacheco C, Morales-Corona J, Vicente-Escobar JO, Soto-Estrada AM, Godínez-Fernández R. Modeling integrin and plasma-polymerized pyrrole interactions: chemical diversity relevance for cell regeneration. Scientific reports 2019; 9(1): 1-12. [DOI:10.1038/s41598-019-43286-4]
27. Wichterle H, Lieberam I, Porter J, Jessel T. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002; 110(3): 385-397. [DOI:10.1016/S0092-8674(02)00835-8]
28. Wiese S, Herrmann T, Drepper C, Jablonka S, Funk N, Klausmeyer A, Rogers ML, Rush R, Sendtner M. Isolation and enrichment of embryonic mouse motoneurons from the lumbar spinal cord of individual mouse embryos. Nature protocols 2010; 5(1): 31-38. [DOI:10.1038/nprot.2009.193]
29. Hubbard KS, Gut IM, Scheeler SM, Lyman ME, McNutt PM. Compatibility of SYTO 13 and Hoechst 33342 for longitudinal imaging of neuron viability and cell death. BMC research notes 2012; 5: 1-5. [DOI:10.1186/1756-0500-5-437]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb