Volume 25, Issue 6 (11-2021)                   IBJ 2021, 25(6): 408-416 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aboudzadeh N, Khavandi A, Javadpour J, Shokrgozar M A, Imani M. Effect of Dioxane and N-Methyl-2-pyrrolidone as a Solvent on Biocompatibility and Degradation Performance of PLGA/nHA Scaffolds. IBJ 2021; 25 (6) :408-416
URL: http://ibj.pasteur.ac.ir/article-1-3318-en.html
Background: Solvent casting/particulate leaching is one of the most conventional methods for fabricating polymer/ceramic composite scaffolds. In this method, the solvent generally affects resulting scaffold properties, including porosity and degradation rate. Methods: Herein, composite scaffolds of PLGA (poly(lactide-co-glycolide))/ nano-hydroxyapatite (nHA) with different percentages of nHA (25, 35, and 45 wt. %) were prepared by the solvent casting/particle leaching combined with freeze drying. The effects of two different solvents, 1,4-dioxane (DIO) and N-methyl-2-pyrrolidone (NMP), on morphology, porosity, bioactivity, degradation rate, and biocompatibility of the resulting scaffolds were investigated. Results: The results revealed that increasing the nano-hydroxyapatite (nHA) percentages had no significant effect on the porosity and interconectivity of scaffolds (p > 0.05), whereas altering the solvent from DIO into NMP decreased the porosity from about 87% into 71%, respectively. Moreover, scaffolds of DIO illustrated the high results of cell proliferation compared to those of NMP; the cell viability of GD25 decreased from 85% to 65% for GN25. The findings also indicated that scaffolds prepared by NMP had a higher rate of losing weight in comparison to DIO. Adding nHA to PLGA had a significant effect on the bioactivity of scaffolds (p < 0.05), composite scaffolds with 45 wt % nHA had at least 30% more weight gain compared to the neat polymer scaffolds. Conclusion: The DIO scaffolds have higher rates of porosity, interconnectivity, bioactivity, and biocompatibility than NMP scaffolds due to its high evaporation rate.

1. Gu Z, Kong L, Feng X, Guo T, Dai J, Li S, Huo N, Ding Y. Synthesis and characterization of PLGA-gelatin complex with growth factor incorporation as potential matrix. Journal of alloys and compounds 2009; 474(1-2): 450-454. [DOI:10.1016/j.jallcom.2008.06.150]
2. Christy PN, Basha SK, Kumari VS, Bashir A, Maaza M, Kaviyarasu K, Arasu MV, Al-Dhabi NA, Ignacimuthu S. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications-A review. Journal of drug delivery science and technology 2020; 55: 101452. [DOI:10.1016/j.jddst.2019.101452]
3. Tsang VL, Bhatia SN. Three-dimensional tissue fabrication. Advanced drug delivery reviews 2004; 56(11): 1635-1647. [DOI:10.1016/j.addr.2004.05.001]
4. Cai M, Liu H, Jiang Y, Wang J, Zhang S. A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation. Colloids and surfaces B: siointerfaces 2019; 183: 110445. [DOI:10.1016/j.colsurfb.2019.110445]
5. Ignatius A, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly (L, DL-lactide) and poly (L-lactide-co-glycolide). Biomaterials 1996; 17(8): 831-839. [DOI:10.1016/0142-9612(96)81421-9]
6. Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. European polymer journal 2019; 120: 109191. [DOI:10.1016/j.eurpolymj.2019.08.018]
7. Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of materials science 2009; 44(21): 5713-5724. [DOI:10.1007/s10853-009-3770-7]
8. Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Progress in polymer Science 2010; 35(4): 403-440. [DOI:10.1016/j.progpolymsci.2010.01.006]
9. Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced drug delivery reviews 2016; 107: 247-276. [DOI:10.1016/j.addr.2016.04.015]
10. Hamad K, Kaseem M, Yang H, Deri F, Ko Y. Properties and medical applications of polylactic acid: A review. Express polymer letters 2015; 9(5): 435-455. [DOI:10.3144/expresspolymlett.2015.42]
11. Alizadeh-Osgouei M, Li Y, Wen C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive materials 2019; 4: 22-36 [DOI:10.1016/j.bioactmat.2018.11.003]
12. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. European cells and materials 2003; 5(1): 1-16. [DOI:10.22203/eCM.v005a01]
13. Choudhury M, Mohanty S, Nayak S. Effect of different solvents in solvent casting of porous PLA scaffolds-In biomedical and tissue engineering applications. Journal of biomaterials and tissue engineering 2015; 5(1): 1-9. [DOI:10.1166/jbt.2015.1243]
14. Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Advances in materials science and engineering 2019; 2019. [DOI:10.1155/2019/3429527]
15. Sola A, Bertacchini J, D'Avella D, Anselmi L, Maraldi T, Marmiroli S, Messori M. Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Materials science and engineering 2019; 96: 153-165. [DOI:10.1016/j.msec.2018.10.086]
16. Haider A, Haider S, Kummara MR, Kamal T, Alghyamah A-AA, Iftikhar FJ, Bano B, Khan N, Afridi MA, Han SS. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. Journal of saudi chemical society 2020; 24(2): 186-215. [DOI:10.1016/j.jscs.2020.01.002]
17. Huang R, Zhu X, Tu H, Wan A. The crystallization behavior of porous poly (lactic acid) prepared by modified solvent casting/particulate leaching technique for potential use of tissue engineering scaffold. Materials letters 2014; 136: 126-129. [DOI:10.1016/j.matlet.2014.08.044]
18. Wischke C, Zhang Y, Mittal S, Schwendeman SP. Development of PLGA-based injectable delivery systems for hydrophobic fenretinide. Pharmaceutical research 2010; 27(10): 2063-2074. [DOI:10.1007/s11095-010-0202-y]
19. Al-Tahami K, Singh J. Smart polymer based delivery systems for peptides and proteins. Recent patents on drug delivery and formulation 2007; 1(1): 65-71. [DOI:10.2174/187221107779814113]
20. Chen J, Ye J, Liao X, Li S, Xiao W, Yang Q, Li G. Organic solvent free preparation of porous scaffolds based on the phase morphology control using supercritical CO2. The journal of supercritical fluids 2019; 149: 88-96. [DOI:10.1016/j.supflu.2019.03.021]
21. Sartor O. Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology 2003; 61(2): 25-31. [DOI:10.1016/S0090-4295(02)02396-8]
22. Astaneh R, Erfan M, Barzin J, Mobedi H, Moghimi H. Effects of ethyl benzoate on performance, morphology, and erosion of PLGA implants formed in situ. Advances in polymer technology: journal of the polymer processing institute 2008; 27(1): 17-26. [DOI:10.1002/adv.20114]
23. Aboudzadeh N, Imani M, Shokrgozar MA, Khavandi A, Javadpour J, Shafieyan Y, Farokhi M. Fabrication and characterization of poly (D, L‐lactide‐co‐glycolide)/ hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. Journal of biomedical materials research part A 2010; 94(1): 137-145. [DOI:10.1002/jbm.a.32673]
24. Abbasi N, Hamlet S, Love RM, Nguyen N-T. Porous scaffolds for bone regeneration. Journal of science: advanced materials and devices 2020; 5(1): 1-9. [DOI:10.1016/j.jsamd.2020.01.007]
25. Qian J, Xu W, Yong X, Jin X, Zhang W. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. Materials science and engineering: C 2014; 36: 95-101. [DOI:10.1016/j.msec.2013.11.047]
26. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive materials 2018; 3(3): 278-314. [DOI:10.1016/j.bioactmat.2017.10.001]
27. Efraim Y, Schoen B, Zahran S, Davidov T, Vasilyev G, Baruch L, Zussman E, Machluf M. 3D structure and processing methods direct the biological attributes of ECM-based cardiac scaffolds. Scientific reports 2019; 9(1): 1-13. [DOI:10.1038/s41598-019-41831-9]
28. Chen L, Zhu WM, Fei ZQ, Chen JL, Xiong JY, Zhang JF, Duan L, Huang J, Liu Z, Wang D. The study on biocompatibility of porous nHA/PLGA composite scaffolds for tissue engineering with rabbit chondrocytes in vitro. BioMed research international 2013; 2013. [DOI:10.1155/2013/412745]
29. Hutmacher DWF, Woodfield TB, Dalton PD. Scaffold Design and Fabrication. In van Blitterswijk, Clemens A, de Boer J (Eds.) Tissue Engineering (2nd ed.), Elsevier,: pp. 311-346; 2014. [DOI:10.1016/B978-0-12-420145-3.00010-9]
30. Dorati R, Colonna C, Genta I, Modena T, Conti B. Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffolds. Polymer degradation and stability 2010; 95(4): 694-701. [DOI:10.1016/j.polymdegradstab.2009.11.039]
31. Sander EA, Alb AM, Nauman EA, Reed WF, Dee KC. Solvent effects on the microstructure and properties of 75/25 poly (d, l‐lactide‐co‐glycolide) tissue scaffolds. Journal of biomedical materials research part A 2004; 70(3): 506-513. [DOI:10.1002/jbm.a.30109]
32. Wu Q, Xie W, Wu H, Wang L, Liang S, Chang H, Liu B. Effect of volatile solvent and evaporation time on formation and performance of PVC/PVC-g-PEGMA blended membranes. RSC advances 2019; 9(59): 34486-34495. [DOI:10.1039/C9RA05454E]
33. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. Journal of biomaterials science, polymer edition 2017; 28(16): 1797-1825. [DOI:10.1080/09205063.2017.1354674]
34. Zhao C, Fan H, Zhang X. Advances in biomimetic apatite coating on metal implants. Advances in biomimetics 2011: 397-428. [DOI:10.5772/14938]
35. Bosco R, Van Den Beucken J, Leeuwenburgh S, Jansen J. Surface engineering for bone implants: a trend from passive to active surfaces. Coatings 2012; 2(3): 95-119. [DOI:10.3390/coatings2030095]
36. Kobayashi M. Enhancement of osseointegration of the hydroxyapatite implant by low intensive ultrasound wave (LIPUS) irradiation. Journal of osseointegration 2020; 12 (4) 2020.
37. Mozafari M, Salahinejad E, Shabafrooz V, Yazdimamaghani M, Vashaee D, Tayebi L. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry. International journal of nanomedicine 2013; 8: 1665. [DOI:10.2147/IJN.S42659]
38. Salmasi S, Nayyer L, Seifalian AM, Blunn GW. Suppl-3, M8: nanohydroxyapatite effect on the degradation, osteoconduction and mechanical properties of polymeric bone tissue engineered scaffolds. The open orthopaedics journal 2016; 10: 900. [DOI:10.2174/1874325001610010900]
39. Dave K, Gomes VG. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. Materials science and engineering: C 2019; 105: 110078. [DOI:10.1016/j.msec.2019.110078]
40. Heljak MK, Swieszkowski W, Kurzydlowski KJ. Modeling of the degradation kinetics of biodegradable scaffolds: The effects of the environmental conditions. Journal of applied polymer science 2014; 131(11): 2014. [DOI:10.1002/app.40280]
41. Díaz E, Puerto I, Ribeiro S, Lanceros-Mendez S, Barandiarán JM. The influence of copolymer composition on PLGA/nHA scaffolds' cytotoxicity and in vitro degradation. Nanomaterials 2017; 7(7): 173. [DOI:10.3390/nano7070173]
42. Dehghanian C, Aboudzadeh N, Shokrgozar MA. Characterization of silicon-substituted nano hydroxyapatite coating on magnesium alloy for biomaterial application. Materials chemistry and physics 2018; 203: 27-33. [DOI:10.1016/j.matchemphys.2017.08.020]
43. Odelius K, Höglund A, Kumar S, Hakkarainen M, Ghosh AK, Bhatnagar N, Albertsson A-C. Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules 2011; 12(4): 1250-1258. [DOI:10.1021/bm1015464]
44. Chen X, Fan H, Deng X, Wu L, Yi T, Gu L, Zhou C, Fan Y, Zhang X. Scaffold structural micro-environmental cues to guide tissue regeneration in bone tissue applications. Nanomaterials 2018; 8(11): 960. [DOI:10.3390/nano8110960]
45. Galow AM, Rebl A, Koczan D, Bonk SM, Baumann W, Gimsa J. Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochemistry and biophysics reports 2017; 10: 17-25. [DOI:10.1016/j.bbrep.2017.02.001]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb