Volume 24, Issue 2 (3-2020)                   IBJ 2020, 24(2): 81-88 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden W M, et al . Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor. IBJ 2020; 24 (2) :81-88
URL: http://ibj.pasteur.ac.ir/article-1-2922-en.html
Background: Recently, modification of T cells with chimeric antigen receptor (CAR) has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a single-chain variable domain fragment (scFv). Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a specific antigen-binding fragment derived from camelid that has great homology to human VH and low immunogenic potential. Therefore, in this study, nanobody was employed instead of scFv in CAR construct. Methods: In this study, a CAR was constructed based on a nanobody against PSMA (NBPII-CAR). At first, Jurkat cells were electroporated with NBPII-CAR, and then flow cytometry was performed for NBPII-CAR expression. For functional analysis, CAR T cells were co-cultured with prostate cancer cells and analyzed for IL-2 secretion, CD25 expression, and cell proliferation. Results: Flow cytometry results confirmed the expression of NBPII-CAR on the transfected Jurkat cells. Our data showed the specificity of engineered Jurkat cells against prostate cancer cells by not only increasing the IL-2 cytokine (about 370 pg/ml) but also expressing the T-cell activation marker CD25 (about 30%). In addition, proliferation of engineered Jurkat cells increased nearly 60% when co-cultured with LNCaP (PSMA+), as compared with DU145 (PSMA-). Conclusion: Here, we describe the ability of nanobody-based CAR to recognize PSMA that leads to the activation of Jurkat cells. This construct might be used as a promising candidate for clinical applications in prostate cancer therapy.
Type of Study: Full Length/Original Article | Subject: Related Fields

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb