Volume 24, Issue 4 (7-2020)                   IBJ 2020, 24(4): 236-242 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shapourzadeh A, Atyabi S M, Irani S, Bakhshi H. Enhanced Adipose Mesenchymal Stem Cells Proliferation by Carboxymethyl-Chitosan Functionalized Polycaprolactone Nanofiber. IBJ 2020; 24 (4) :236-242
URL: http://ibj.pasteur.ac.ir/article-1-3046-en.html
Background: Through combining two synthetic and natural polymers, scaffolds can be developed for tissue engineering and regenerative medicine purposes. Methods: In this work, carboxymethyl chitosan (CMC; 20%) was grafted to Polycaprolactone (PCL) nanofibers using the cold atmospheric plasma of helium. The PCL scaffolds were exposed to CAP, and functional groups were developed on the PCL surface. Results: The results of Fourier Transform Infrared Spectroscopy confirmed CMC (20%) graft on PCL scaffold. The Thiazolyl blue tetrazolium bromide assay showed a significant enhancement (p < 0.05) in the cell affinity and proliferation of adipose-derived stem cells (ADSCs) to CMC20%-graft-PCL scaffolds. After 14 days, bone differentiation was affirmed through alizarin red and calcium depositions. Conclusion: Based on the results, the CMC20%-graft-PCL can support the proliferation of ADSCs and induce the differentiation into bone with longer culture time. 

1. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Critical reviews in biomedical engineering 2012; 40(5): 363-408. [DOI:10.1615/CritRevBiomedEng.v40.i5.10]
2. Chae SK, Mun CH, Noh DY, Kang E, Lee SH. Simple fabrication method for a porous poly (vinyl alcohol) matrix by multisolvent mixtures for an air-exposed model of the lung epithelial system. Langmuir 2014; 30(41): 12107-12113. [DOI:10.1021/la501453h]
3. Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A. Current concepts in scaffolding for bone tissue engineering. Archives of bone and joint surgery 2018; 6(2): 90-99.
4. Rudin A, Choi P. The Elements of Polymer Science and Egineering; 2012. [DOI:10.1016/B978-0-12-382178-2.00013-4]
5. Fu W, Liu Z, Feng B, Hu R, He X, Wang H, Yin M, Huang H, Zhang H, Wang W. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. International journal of nanomedicine 2014; 9: 2335-2344. [DOI:10.2147/IJN.S61375]
6. Aguirre-Chagala YE, Altuzar V, León-Sarabia E, Tinoco-Magaña JC, Yañez-Limón JM, Mendoza-Barrera C. Physicochemical properties of poly-caprolactone/collagen/elastin nanofibers fabricated by electrospinning. Materials science and engineering: C 2017; 76: 897-907. [DOI:10.1016/j.msec.2017.03.118]
7. Swindle-Reilly KE, Paranjape CS, Miller CA. Electrospun poly(caprolactone)-elastin scaffolds for peripheral nerve regeneration. Progress in biomaterials 2014; 3: 20. [DOI:10.1007/s40204-014-0020-0]
8. Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC. Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. Journal of materials science 2014; 49(3): 1076-1089. [DOI:10.1007/s10853-013-7785-8]
9. Du F, Wang H, Zhao W, Li D, Kong D, Yang J, Zhang Y. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials 2012; 33(3): 762-770. [DOI:10.1016/j.biomaterials.2011.10.037]
10. Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, Ohst D, Ong CS, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PLoS one 2016; 11(7): e0158555. [DOI:10.1371/journal.pone.0158555]
11. Liu L, Li Y, Liu H, Fang Y. Synthesis and characterization of chitosan-graft-polycaprolactone copolymers. European polymer journal 2004; 40(12): 2739-2744. [DOI:10.1016/j.eurpolymj.2004.07.016]
12. Cooper A, Bhattarai N, Zhang B. Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration. Carbohydrate polymers 2011; 85(1): 149-156. [DOI:10.1016/j.carbpol.2011.02.008]
13. Jing X, Mi HY, Wang XC, Peng XF, Turng LS. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. ACS applied materials and interfaces 2015; 7(12): 6955-6965. [DOI:10.1021/acsami.5b00900]
14. Wei LG, Chang HI, Wang Y, Hsu SH, Dai LG, Fu KY, Dai NT. A gelatin/collagen/polycaprolactone scaffold for skin regeneration. PeerJ 2019; 7: e6358. [DOI:10.7717/peerj.6358]
15. Sharifi Ferdoey F, Irani S, Zandi M, Soleimani M. Synthesis and Surface Modification of Polycaprolactone Nanofibers for Tissue Engineering. Journal of Ardabil university of medical sciences 2014; 14(3): 217-228.
16. Shariatinia Z. Carboxymethyl chitosan: Properties and biomedical applications. International journal of biological macromolecules 2018; 120(Pt B): 1406-1419. [DOI:10.1016/j.ijbiomac.2018.09.131]
17. De Geyter N, Morent R. Non-thermal plasma surface modification of biodegradable polymers. Biomedical science, engineering and technology 2012; 20: 225-246. [DOI:10.5772/18407]
18. Cools P, Ghobeira R, Van Vrekhem S, De Geyter N, Morent R. Non-thermal plasma technology for the improvement of scaffolds for tissue engineering and regenerative medicine: a review. IntechOPen 2016; 2016: 173-212. [DOI:10.5772/62007]
19. Atyabi SM, Sharifi F, Irani S, Zandi M, Mivehchi H, Nagheh Z. Cell attachment and viability study of PCL nano-fiber modified by cold atmospheric plasma. Cell biochemistry and biophysics 2016; 74(2): 181-190. [DOI:10.1007/s12013-015-0718-1]
20. Meghdadi M, Atyabi SM, Pezeshki-Modaress M, Irani S, Noormohammadi Z, Zandi M. Cold atmospheric plasma as a promising approach for gelatin immobilization on poly(ε-caprolactone) electrospun scaffolds. Progress in biomaterials 2019; 8(2): 65-75. [DOI:10.1007/s40204-019-0111-z]
21. Sharifi F, Atyabi SM, Norouzian D, Zandi M, Irani S, Bakhshi H. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. International journal of biological macromolecules 2018; 115: 243-248. [DOI:10.1016/j.ijbiomac.2018.04.045]
22. Triggle DJ, Janis RA. Calcium channel ligands. Annual review of pharmacology and toxicology 1987; 27(1): 347-369. [DOI:10.1146/annurev.pa.27.040187.002023]
23. Kittur FS, Prashanth KH, Kadimi SU, Tharanathan RN. Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydrate polymers 2002; 49(2): 185-193. [DOI:10.1016/S0144-8617(01)00320-4]
24. Van der Schueren L, Steyaert I, De Schoenmaker B, De Clerck K. Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydrate polymers 2012; 88(4): 1221-1226. [DOI:10.1016/j.carbpol.2012.01.085]
25. Bakhshi H, Agarwal S. Hyperbranched polyesters as biodegradable and antibacterial additives. Journal of materials chemistry B 2017; 5(33): 6827-6834. [DOI:10.1039/C7TB01301A]
26. Dabouian A, Bakhshi H, Irani S, Pezeshki-Modaress M. β-Carotene: a natural osteogen to fabricate osteoinductive electrospun scaffolds. RSC advances 2018; 8(18): 9941-9945. [DOI:10.1039/C7RA13237A]
27. Bak TY, Kook MS, Jung SC, Kim BH. Biological effect of gas plasma treatment on CO2 gas foaming/salt leaching fabricated porous polycaprolactone scaffolds in bone tissue engineering. Journal of nanomaterials 2014; Article ID: 657542. [DOI:10.1155/2014/657542]
28. Trizio I, Intranuovo F, Gristina R, Dilecce G, Favia P. He/O2 atmospheric pressure plasma jet treatments of PCL scaffolds for tissue engineering and regenerative medicine. Plasma processes and polymers. 2015; 12(12): 1451-1458. [DOI:10.1002/ppap.201500104]
29. Chung YM, Jung MJ, Han JG, Lee MW, Kim YM. Atmospheric RF plasma effects on the film adhesion property. Thin solid films 2004; 447-448: 354-358. [DOI:10.1016/S0040-6090(03)01080-0]
30. Molina R, Erra P, Julià L, Bertran E. Free radical formation in wool fibers treated by low temperature plasma. Textile research journal 2003; 73(11): 955-959. [DOI:10.1177/004051750307301104]
31. Alemi PS, Atyabi SA, Sharifi F, Mohamadali M, Irani S, Bakhshi H, Atyabi SM. Synergistic effect of pressure cold atmospheric plasma and carboxymethyl chitosan to mesenchymal stem cell differentiation on PCL/CMC nanofibers for cartilage tissue engineering. Polymers for advanced technologies 2019; 30(6): 1356-1364. [DOI:10.1002/pat.4568]
32. Huang A, Jiang Y, Napiwocki B, Mi H, Peng X, Turng LS. Fabrication of poly(ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Advances 2017; 7(69): 43432-43444. [DOI:10.1039/C7RA06987A]
33. Tao L, Zhonglong L, Ming X, Zezheng Y, Zhiyuan L, Xiaojun Z, Jinwu W. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC advances 2017; 85: 54100-54110. [DOI:10.1039/C7RA06913H]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb