Volume 29, Issue 5 (9-2025)                   IBJ 2025, 29(5): 309-320 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaffari S, Esmaeili M, Ayoubnejad F, Talebkhan Y, Mohammadi M. Helicobacter pylori Dihydroorotate Dehydrogenase: a Promising Target for Screening Potential Drug Candidates. IBJ 2025; 29 (5) :309-320
URL: http://ibj.pasteur.ac.ir/article-1-5231-en.html
Abstract:  
Background: De novo pyrimidine biosynthesis is essential for the survival of all living organisms. DHODH catalyzes the fourth step in this pathway. Inhibition of DHODH induces pyrimidine depletion and effectively eradicates microorganisms like H. pylori, which lacks the pyrimidine salvage pathway. Herein, we expressed rHp-DHODH, characterized its enzymatic activity, kinetics, and stability, and subsequently evaluated its inhibition by HQNO.
Methods: The gene fragment encoding the rHp-DHODH protein was synthesized, subcloned, and expressed in soluble form. The recombinant protein was purified, its identity was confirmed, and its activity was measured using a colorimetric reduction assay. Kinetic parameters and the effects of pH, temperature, and incubation time on the enzymatic activity were investigated. The inhibitory effect of HQNO on rHp-DHODH was evaluated using the DCIP reduction assay. The MIC of HQNO against H. pylori was determined, and its bactericidal/bacteriostatic effect was assessed.
Results: Optimal soluble expression of rHp-DHODH was achieved in BL21(DE3)pLysS. The enzyme exhibited a specific activity of 5.7 U/mg. Maximum activity was observed at pH 8.0 in Tris-HCl buffer at 25 °C. The Km values were 39.75 µM for DHO and 5.37 µM for CoQ10, with a kcat of
3.82 s-¹. The IC50 of HQNO against the recombinant enzyme was determined as 1.75 μM. HQNO inhibited H. pylori growth with an MIC of 0.5-1.0 µg/mL, displaying concentration-dependent bacteriostatic to bactericidal effects.

Conclusions: The rHp-DHODH and its optimized enzymatic assay provide a reliable platform for screening candidate inhibitors, such as HQNO, advancing drug development efforts against H. pylori infection.

References
1. Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, et al. Helicobacter pylori infection. Nat Rev Dis Primers. 2023;9(1):19. [DOI:10.1038/s41572-023-00431-8]
2. Malfertheiner P, Schulz C, Hunt RH. Helicobacter pylori infection: A 40-year journey through shifting the paradigm to transforming the management. Dig Dis. 2024;42(4):299-308. [DOI:10.1159/000538079]
3. Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E. Prevalence of antibiotic resistance in Helicobacter pylori: A systematic review and meta-analysis in World Health Organization regions. Gastroenterology. 2018;155(5):1372-1382. [DOI:10.1053/j.gastro.2018.07.007]
4. Davies O, Bennett S. WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO Newsletters. 2017.
5. Garavito MF, Narváez-Ortiz HY, Zimmermann BH. Pyrimidine metabolism: Dynamic and versatile pathways in pathogens and cellular development. J Genet Genomics. 2015;42(5):195-205. [DOI:10.1016/j.jgg.2015.04.004]
6. Boschi D, Pippione AC, Sainas S, Lolli ML. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem. 2019;183:111681. [DOI:10.1016/j.ejmech.2019.111681]
7. Copeland RA, Marcinkeviciene J, Haque TS, Kopcho LM, Jiang W, Wang K, et al. Helicobacter pylori-selective antibacterials based on inhibition of pyrimidine biosynthesis. J Biol Chem. 2000;275(43):33373-8. [DOI:10.1074/jbc.M004451200]
8. Belen Cassera M, Zhang Y, Hazleton KZ, Schramm VL. Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem. 2011;11(16):2103-15. [DOI:10.2174/156802611796575948]
9. Reis RA, Calil FA, Feliciano PR, Pinheiro MP, Nonato MC. The dihydroorotate dehydrogenases: Past and present. Arch Biochem Biophys. 2017;632:175-91. [DOI:10.1016/j.abb.2017.06.019]
10. Liu Y, Gao Z-Q, Liu CP, Xu JH, Li LF, Ji CN, et al. Structure of the putative dihydroorotate dehydrogenase from Streptococcus mutans. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011;67(2):182-7. [DOI:10.1107/S1744309110048414]
11. Kahler AE, Nielsen FS, Switzer RL. Biochemical characterization of the heteromeric Bacillus subtilis dihydroorotate dehydrogenase and its isolated subunits. Arch Biochem Biophys. 1999;371(2):191-201. [DOI:10.1006/abbi.1999.1455]
12. Feliciano PR, Cordeiro AT, Costa-Filho AJ, Nonato MC. Cloning, expression, purification, and characterization of Leishmania major dihydroorotate dehydrogenase. Protein Exp Purif. 2006;48(1):98-103. [DOI:10.1016/j.pep.2006.02.010]
13. Arakaki TL, Buckner FS, Gillespie JR, Malmquist NA, Phillips MA, Kalyuzhniy O,et al. Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies. Mol Microbiol. 2008;68(1):37-50. [DOI:10.1111/j.1365-2958.2008.06131.x]
14. Nagy M, Lacroute F, Thomas D. Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci USA. 1992;89(19):8966-70. [DOI:10.1073/pnas.89.19.8966]
15. Orozco Rodriguez JM, Wacklin-Knecht HP, Clifton LA, Bogojevic O, Leung A, Fragneto G, et al. New insights into the interaction of Class II dihydroorotate dehydrogenases with ubiquinone in lipid bilayers as a function of lipid composition. Int J Mol Sci. 2022;23(5):2437. [DOI:10.3390/ijms23052437]
16. Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: Fresh insights into an ancient pathway. J Biol Chem. 2004;279(32):33035-8. [DOI:10.1074/jbc.R400007200]
17. Ullrich A, Knecht W, Piskur J, Löffler M. Plant dihydroorotate dehydrogenase differs significantly in substrate specificity and inhibition from the animal enzymes. FEBS Lett. 2002;529(2-3):346-50. [DOI:10.1016/S0014-5793(02)03425-7]
18. Löffler M, Knecht W, Rawls J, Ullrich A, Dietz C. Drosophila melanogaster dihydroorotate dehydrogenase: The N-terminus is important for biological function in vivo but not for catalytic properties in vitro. Insect Biochem Mol Biol. 2002;32(9):1159-69. [DOI:10.1016/S0965-1748(02)00052-8]
19. Bouwknegt J, Koster CC, Vos AM, Ortiz-Merino RA, Wassink M, Luttik MA, et al. Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis. Fungal Biol Biotechnol. 2021;8(1):10. [DOI:10.1186/s40694-021-00117-4]
20. Hoffman LR, Déziel E, D'Argenio DA, Lépine F, Emerson J, McNamara S, et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci. 2006;103(52):19890-5. [DOI:10.1073/pnas.0606756104]
21. Petri J, Shimaki Y, Jiao W, Bridges HR, Russell ER, Parker EJ, et al. Structure of the NDH-2-HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors. Biochim Biophys Acta Bioenerg. 2018;1859(7):482-90. [DOI:10.1016/j.bbabio.2018.03.014]
22. Horwitz SM, Blue TC, Ambarian JA, et al. Structural insights into inhibition of the drug target dihydroorotate dehydrogenase by bacterial hydroxyalkylquinolines. RSC Chemical Biology 2022;3:420-425. [DOI:10.1039/D1CB00255D]
23. R&D systems products. Recombinant human DHODH protein. Datasheets. Available at https://www.rndsystems.com
24. Michaelis L, Menten ML, Johnson KA, Goody RS. The original michaelis constant: Translation of the 1913 michaelis-menten paper. Biochemistry. 2011;50(39):8264-8269. [DOI:10.1021/bi201284u]
25. Salehi N, Attaran B, Eskini N, Esmaeili M, Sharifirad A, Sadeghi M, et al. New insights into resistance of Helicobacter pylori against third- and fourth-generation fluoroquinolones: A molecular docking study of prevalent GyrA mutations. Helicobacter. 2019;24(5):12628. [DOI:10.1111/hel.12628]
26. Attaran B, Salehi N, Ghadiri B, Esmaeili M, Kalateh S, Tashakoripour M, et al. The penicillin binding protein 1A of Helicobacter pylori, its amoxicillin binding site and access routes. Gut Pathog. 2021;13(1):43. [DOI:10.1186/s13099-021-00438-0]
27. Salehi N, Attaran B, Zare-Mirakabad F, Ghadiri B, Esmaeili M, Shakaram M, et al. The outward shift of clarithromycin binding to the ribosome in mutant Helicobacter pylori strains. Helicobacter. 2020;25(6):12731. [DOI:10.1111/hel.12731]
28. Mohammadi M, Kashani SS, Garoosi YT, Tazehkand SJ. In vivo measurement of Helicobacter pylori infection. Methods Mol Biol 2012;921:239-56. [DOI:10.1007/978-1-62703-005-2_26]
29. Shans N, Esmaeili M, Abraheh K, Asadi Hanjani N, Farrokhi M, Sardarpour N, et al. Development of experimental platforms to assess helicobacter pylori HopQ interaction with host CEACAM molecules. Iran Biomed J. 2025;29(3):138-48.
30. Cockerill, Franklin R. Performance standards for antimicrobial susceptibility testing; Twenty-first informational supplement. Dutton Park Health Sciences; Wayne, Pa : Clinical and Laboratory Standards Institute; 2011.
31. Dang BN, Graham DY. Helicobacter pylori infection and antibiotic resistance: A WHO high priority? Nat Rev Gastroenterol Hepatol. 2017;14(7):383-4. [DOI:10.1038/nrgastro.2017.57]
32. Nielsen FS, Jensen KF, Larsen S, Rowland P. Purification and characterization of dihydroorotate dehydrogenase a from lactococcus lactis, crystallization and preliminary X‐ray diffraction studies of the enzyme. Protein Sci. 1996;5(5):852-6. [DOI:10.1002/pro.5560050506]
33. Bouzari S, Oloomi M, Hatef Salmaninan A, Jafati A. Construction and expression of a fused gene for B subunit of the heat-labile and a truncated form of the heat-stable enterotoxins in Escherichia coli. Iran Biomed J. 1999;3:83-6.
34. Copeland RA, Davis JP, Dowling RL, Lombardo D, Murphy KB, Patterson TA. Recombinant human dihydroorotate dehydrogenase: Expression, purification, and characterization of a catalytically functional truncated enzyme. Arch Biochem Biophys. 1995;323(1):79-86. [DOI:10.1006/abbi.1995.0012]
35. Ullrich A, Knecht W, Fries M, Löffler M. Recombinant expression of N‐terminal truncated mutants of the membrane bound mouse, rat and human flavoenzyme dihydroorotate dehydrogenase: A versatile tool to rate inhibitor effects? Eur J Biochem. 2001;268(6):1861-8. [DOI:10.1046/j.1432-1327.2001.02061.x]
36. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev. 1981;45(2):316-54. [DOI:10.1128/mr.45.2.316-354.1981]
37. Robinson PK. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015;59:1-41. [DOI:10.1042/bse0590001]
38. Chen SF, Perrella FW, Behrens DL, Papp LM. Inhibition of dihydroorotate dehydrogenase activity by brequinar sodium. Cancer Res. 1992;52(13):3521-7.
39. Davis JP, Cain GA, Pitts WJ, Magolda RL, Copeland RA. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry. 1996;35(4):1270-3. [DOI:10.1021/bi952168g]
40. Greene S, Watanabe K, Braatz-Trulson J, Lou L. Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem Pharmacol. 1995;50(6):861-7. [DOI:10.1016/0006-2952(95)00255-X]
41. Knecht W, Löffler M. Species-related inhibition of human and rat dihydroorotate dehydrogenase by immunosuppressive isoxazol and cinchoninic acid derivatives. Biochem Pharmacol. 1998;56(9):1259-64. [DOI:10.1016/S0006-2952(98)00145-2]
42. Knecht W, Bergjohann U, Gonski S, Kirschbaum B, Löffler M. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme. Eur J Biochem. 1996;240(1):292-301. [DOI:10.1111/j.1432-1033.1996.0292h.x]
43. Ohishi T, Masuda T, Abe H, Hayashi C, Adachi H, Ohba S-I, et al. Monotherapy with a novel intervenolin derivative, AS-1934, is an effective treatment for Helicobacter pylori infection. Helicobacter. 2018;23(2):12470. [DOI:10.1111/hel.12470]
44. Haque TS, Tadesse S, Marcinkeviciene J, Rogers MJ, Sizemore C, Kopcho LM, et al. Parallel synthesis of potent, pyrazole-based inhibitors of Helicobacter pylori dihydroorotate dehydrogenase. J Med Chem. 2002;45(21):4669-78. [DOI:10.1021/jm020112w]
45. Agarwal AA, Georgiades JD, Dranow DM, Lorimer DD, Edwards T, Barrett KF, et al. Crystal structure of dihydroorotate dehydrogenase from Helicobacter pylori with bound flavin mononucleotide. Acta Crystallogr F Struct Biol Commun.2025;81(3):108-17. [DOI:10.1107/S2053230X25000858]
46. Sousa FM, Pires P, Barreto A, Refojo PN, Silva MS, Fernandes PB, et al. Unveiling the membrane bound dihydroorotate: Quinone oxidoreductase from Staphylococcus aureus. Biochim Biophys Acta Bioenerg. 2023;1864(2):148948. [DOI:10.1016/j.bbabio.2022.148948]
47. Wu Y, Seyedsayamdost M. Synergy and target promiscuity drive structural divergence in bacterial alkylquinolone biosynthesis. Cell Chem Biol. 2017;24(12):1437-44. [DOI:10.1016/j.chembiol.2017.08.024]
48. Pramisandi A, Dobashi K, Mori M, Nonaka K, Matsumoto A, Tokiwa T, et al. Microbial inhibitors active against Plasmodium falciparum dihydroorotate dehydrogenase derived from an Indonesian soil fungus, talaromyces pinophilus BioMCC-f.T. 3979. J Gen Appl Microbiol 2020;66(5):273-8. [DOI:10.2323/jgam.2019.11.007]
49. Wang G, Romero-Gallo J, Benoit SL, Piazuelo MB, Dominguez RL, Morgan DR, et al. Hydrogen metabolism in Helicobacter pylori plays a role in gastric carcinogenesis through facilitating CagA translocation. MBio. 2016;7(4):1022-16. [DOI:10.1128/mBio.01022-16]
50. Kawada M, Inoue H, Ohba S-i, Hatano M, Amemiya M, Hayashi C, et al. Intervenolin, a new antitumor compound with anti-Helicobacter pylori activity, from Nocardia sp. ML96-86F2. J Antibiot. 2013;66(9):543-8. [DOI:10.1038/ja.2013.42]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb