Volume 29, Issue 6 (11-2025)                   IBJ 2025, 29(6): 397-404 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Köstü S, Bakirci B, Şimşek E B, Dumanli D, Çelik A, Kaya A, et al . Transcriptional Control of PI3K/AKT/mTOR by piRNA-651 in Breast Carcinoma. IBJ 2025; 29 (6) :397-404
URL: http://ibj.pasteur.ac.ir/article-1-5229-en.html
Abstract:  
Background: Breast cancer is among the most prevalent malignancies in women worldwide, yet early diagnosis is associated with a high survival rate. The proliferation of BC is linked to the overexpression of genes within the PI3K/AKT/mTOR signaling pathway. piR-651 has been reported to be effective in the proliferation and metastasis of BC. This research sought to evaluate the impact of piR-651 inhibition on the PI3K/AKT/mTOR pathway in HUVEC, MCF-7, and MDA-MB-231 cells.
Methods: Anti-piR-651 and non-target sequences were introduced into HUVEC, MCF-7, and MDA-MB-231 BC cells by lipofectamine transfection. After 48 hours, total RNA was extracted, and qRT-PCR assessed the gene expression of PI3K, AKT, and mTOR.
Results: Anti-piR-651 treatment significantly increased PI3K, AKT, and mTOR gene expression in HUVECs (p < 0.001). In contrast, PI3K and mTOR expression decreased in MCF-7 and MDA-MB-231 cells (p < 0.001), while AKT expression remained unchanged in MDA-MB-231 cells (p > 0.05). Correlations between these genes varied by cell type, with significant associations observed at p < 0.05 or p < 0.01, depending on the group.
Conclusion: piR-651 inhibition causes AKT to behave independently of PI3K and mTOR, particularly in MCF-7 cells, suggesting limited gene therapy potential for estrogen receptor-positive BC. Preliminary data indicate that piR-651 inhibition may reduce BC cell proliferation through effects on PI3K and mTOR.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

References
1. Xiao W, Zhang G, Chen B, Chen X, Wen L, Lai J, et al. Mutational landscape of PI3K-AKT-mTOR pathway in breast cancer: Implications for targeted therapeutics. J Cancer. 2021;12(14):4408-17. [DOI:10.7150/jca.52993]
2. Taghizadeh M, Jafari-Koshki T, Jafarlou V, Raeisi M, Alizadeh L, Roosta Y, et al. The role of piRNAs in predicting and prognosing in cancer: A focus on piRNA-823 (a systematic review and meta-analysis). BMC Cancer. 2024;24(1):484. [DOI:10.1186/s12885-024-12180-2]
3. Guo B, Li D, Du L, Zhu X. piRNAs: Biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 2020;39(2):567-75. [DOI:10.1007/s10555-020-09863-0]
4. Yu Y, Xiao J, Hann SS. The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag Res. 2019:11:5895-909. [DOI:10.2147/CMAR.S209300]
5. Mei Y, Clark D, Mao L. Novel dimensions of piRNAs in cancer. Cancer Lett. 2013;336(1):46-52. [DOI:10.1016/j.canlet.2013.04.008]
6. Liu T, Wang J, Sun L, Li M, He X, Jiang J, et al. Piwi-interacting RNA-651 promotes cell proliferation and migration and inhibits apoptosis in breast cancer by facilitating DNMT1-mediated PTEN promoter methylation. Cell Cycle. 2021;20(16):1603-16. [DOI:10.1080/15384101.2021.1956090]
7. Zhu K, Wu Y, He P, Fan Y, Zhong X, Zheng H, et al. PI3K/AKT/mTOR-targeted therapy for breast cancer. Cells. 2022;11(16):2508. [DOI:10.3390/cells11162508]
8. Zhang H-P, Jiang R-Y, Zhu J-Y, Sun K-N, Huang Y, Zhou H-H, et al. PI3K/AKT/mTOR signaling pathway: An important driver and therapeutic target in triple-negative breast cancer. Breast Cancer. 2024;31(4):539-51. [DOI:10.1007/s12282-024-01567-5]
9. Pantazi P, Carollo E, Carter DRF, Brooks SA. A practical toolkit to study aspects of the metastatic cascade in vitro. Acta Histochem. 2020;122(8):151654. [DOI:10.1016/j.acthis.2020.151654]
10. Azzarito G, Visentin M, Leeners B, Dubey RK. Transcriptomic and functional evidence for differential effects of MCF-7 breast cancer cell-secretome on vascular and lymphatic endothelial cell growth. Int J Mol Sci. 2022;23(13):7192. [DOI:10.3390/ijms23137192]
11. Al-Abboodi M, An R, Weber M, Schmid R, Klausing A, Horch RE, et al. Tumor‑type‑dependent effects on the angiogenic abilities of endothelial cells in an in vitro rat cell model. Oncol Rep. 2019;42(1):350-60. [DOI:10.3892/or.2019.7143]
12. Sigdel I, Ofori-Kwafo A, Heizelman RJ, Nestor-Kalinoski A, Prabhakarpandian B, Tiwari AK, et al. Biomimetic on-chip assay reveals the anti-metastatic potential of a novel thienopyrimidine compound in triple-negative breast cancer cell lines. Front Bioeng Biotechnol. 2023:11:1227119. [DOI:10.3389/fbioe.2023.1227119]
13. Leone P, Malerba E, Susca N, Favoino E, Perosa F, Brunori G, et al. Endothelial cells in tumor microenvironment: Insights and perspectives. Front Immunol. 2024;15(1):1367875. [DOI:10.3389/fimmu.2024.1367875]
14. Wilkus K, Brodaczewska K, Kajdasz A, Kieda C. Distinctive properties of endothelial cells from tumor and normal tissue in human breast cancer. Int J Mol Sci. 2021;22(16):8862. [DOI:10.3390/ijms22168862]
15. Öner Ç, Çolak E. PIWI interacting RNA-651 inhibition transforms the genetic features of MCF-7 breast cancer cells. Oncologie. 2021;23(3):393-407. [DOI:10.32604/Oncologie.2021.016958]
16. Öner Ç, Köser F, Çolak E. The association of piR-651 and piR-823 on metastatic and invasive characteristics of triple negative breast cancer cells. Nucleosides Nucleotides Nucleic Acids. 2014:1-17.
17. Yao J, Wang YW, Fang BB, Zhang SJ, Cheng BL. piR-651 and its function in 95-D lung cancer cells. Biomed Rep. 2016;4(5):546-50. [DOI:10.3892/br.2016.628]
18. Sun W, Guo C, Wan J, Ren H. piRNA-disease association prediction based on multi-channel graph variational autoencoder. PeerJ Comput Sci. 2024:10:2216. [DOI:10.7717/peerj-cs.2216]
19. Chalbatani GM, Dana H, Memari F, Gharagozlou E, Ashjaei S, Kheirandish P, et al. Biological function and molecular mechanism of piRNA in cancer. Pract Lab Med. 2018:13:00113. [DOI:10.1016/j.plabm.2018.e00113]
20. Zhang SJ, Yao J, Shen BZ, Li G-B, Kong SS, Bi DD, et al. Role of piwi-interacting RNA-651 in the carcinogenesis of non-small cell lung cancer. Oncol Lett. 2018;15(1):940-6. [DOI:10.3892/ol.2017.7406]
21. Li D, Luo Y, Gao Y, Yang Y, Wang Y, Xu Y, et al. piR-651 promotes tumor formation in non-small cell lung carcinoma through the upregulation of cyclin D1 and CDK4. Int J Mol Med. 2016;38(3):927-36. [DOI:10.3892/ijmm.2016.2671]
22. Cheng J, Guo J-M, Xiao B-X, Miao Y, Jiang Z, Zhou H, et al. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta. 2011;412(17-18):1621-5. [DOI:10.1016/j.cca.2011.05.015]
23. Lin Y, Zheng J, Lin D. PIWI-interacting RNAs in human cancer. Semin Cancer Biol. 2021:75:15-28. [DOI:10.1016/j.semcancer.2020.08.012]
24. Huang S, Chen B, Qiu P, Yan Z, Liang Z, Luo K, et al. In vitro study of piwi interaction RNA-31106 promoting breast carcinogenesis by regulating METTL3-mediated m6A RNA methylation. Transl Cancer Res. 2023;12(6):1588-601. [DOI:10.21037/tcr-23-790]
25. Qian L, Xie H, Zhang L, Zhao Q, Lü J, Yu Z. Piwi-Interacting RNAs: A New Class of Regulator in Human Breast Cancer. Front Oncol. 2021:11:695077. [DOI:10.3389/fonc.2021.695077]
26. Huang G, Hu H, Xue X, Shen S, Gao E, Guo G, et al. Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol. 2013;15(7):563-8. [DOI:10.1007/s12094-012-0966-0]
27. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023;18;22(1):138. [DOI:10.1186/s12943-023-01827-6]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb