Volume 29, Issue 5 (9-2025)                   IBJ 2025, 29(5): 352-359 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghanbari Alamoti M, Jalali Mashayekhi F, Hosseini N, Najafi H, Changizi-Ashtiyani S. Reno-Protective Properties of Azolla pinnata Extract Against Gentamicin-Induced Kidney Damage Are Attributed to Its Antioxidant Effects.. IBJ 2025; 29 (5) :352-359
URL: http://ibj.pasteur.ac.ir/article-1-5194-en.html
Abstract:  
Background: Gentamicin, a powerful aminoglycoside antibiotic, is limited in clinical use due to dose-related kidney toxicity, mainly caused by oxidative stress. A. pinnata, an antioxidant-rich aquatic fern, has not been extensively studied for renoprotection against GM-induced kidney damage. This research assessed the protective effects of a hydroalcoholic extract of A. pinnata on GM nephrotoxicity.
Methods: Forty male Wistar rats were divided into five groups (n = 8): control, sham, GM (100 mg/kg/day, i.p.), and GM plus A. pinnata extract (10 or 20 mg/kg/day, orally). After seven days, renal function markers (serum creatinine and urea), oxidative stress parameters (MDA, FRAP, CAT, and GPX), TNF-α, and renal histopathology were assessed.
Results: GM significantly damaged kidney function and induced oxidative stress, as shown by increased levels of creatinine, urea, and MDA, along with reduced FRAP and CAT activity (p < 0.05). Co-treatment with A. pinnata extract, especially at 20 mg/kg, significantly lessened these effects by restoring kidney function markers, boosting antioxidant defenses, and lowering lipid peroxidation. The extract did not have a significant impact on either GPX activity or TNF-α levels. Histopathological analysis revealed that GM-induced tubular necrosis and glomerular damage were significantly ameliorated by A. pinnata in a dose-dependent manner.
Conclusion: A. pinnata extract offers notable protection against kidney damage caused by gentamicin, mainly by enhancing the body's natural antioxidant defenses, decreasing lipid peroxidation, and maintaining the normal structure of kidney tissue. These findings suggest that A. pinnata could serve as a valuable complementary treatment to improve the safety of GM use.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Garcia G, Pacchini VR, Zamoner W, Balbi AL, Ponce D. Drug-induced acute kidney injury: a cohort study on incidence, identification of pathophysiological mechanisms, and prognostic factors. Front Med (Lausanne). 2024;11:1459170. [DOI:10.3389/fmed.2024.1459170]
2. Zamoner W, de Oliveira RB, Macedo E. Editorial: When the drug induces kidney diseases: nephrotoxicity and intoxication/poisoning. Front Med (Lausanne). 2025;12:1615283. [DOI:10.3389/fmed.2025.1615283]
3. Alimoradian A, Changizi-Ashtiyani S, Farahani AG, Kheder L, Rajabi R, Sharifi A. Protective effects of pomegranate juice on nephrotoxicity induced by captopril and gentamicin in rats. Iran J Kidney Dis. 2017;11(6):422-8.
4. Changizi-Ashtiyani S, Seddigh A, Najafi H, Hossaini N, Avan A, Akbary A, et al. Pimpinella anisum L. ethanolic extract ameliorates the gentamicin‐induced nephrotoxicity in rats. Nephrology. 2017;22(2):133-8. [DOI:10.1111/nep.12953]
5. Li J, Li QX, Xie XF, Ao Y, Tie CR, Song RJ. Differential roles of dihydropyridine calcium antagonist nifedipine, nitrendipine and amlodipine on gentamicin-induced renal tubular toxicity in rats. Eur J Pharmacol. 2009;620(1-3):97-104. [DOI:10.1016/j.ejphar.2009.08.021]
6. Pessoa EA, Convento M, Silva RG, Oliveira A, Borges FT, Schor N. Gentamicin-induced preconditioning of proximal tubular LLC-PK1 cells stimulates nitric oxide production but not the synthesis of heat shock protein. Braz J Med Biol Res. 2009;42:614-20. [DOI:10.1590/S0100-879X2009005000005]
7. Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559. [DOI:10.3390/molecules21050559]
8. Washeeh ZA, Sosa AA, AL-Asady RKA. The effect of different light intensities on the anatomical and chemical characteristics of the aquatic plant of Azolla pinnata. Int J Aquat Biol. 2024;12(3):275-84.
9. Elrasoul ASA, Mousa AA, Orabi SH, Gad-Allah SM, Eldaim MAA. Ameliorative effect of Azolla pinnata ethanolic extract on ranitidine-induced hepatotoxicity in rats. J Curr Vet Res. 2020;2(2):21-9. [DOI:10.21608/jcvr.2020.121532]
10. Abu-Zahra NIS, Gouda M, Elseify MM, Abass ME, El-Gohary MS, El-Sokary ET. Azolla pinnata mitigates pendimethalin induced immunotoxicity, oxidative stress and histopathological changes in Oreochromis niloticus. Sci Rep. 2025;15(1):16226. [DOI:10.1038/s41598-025-96757-2]
11. Elrasoul ASA, Mousa AA, Orabi SH, Mohamed MAE, Gad-Allah SM, Almeer R, et al. Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Effects of Azolla pinnata Ethanolic Extract against Lead-Induced Hepatotoxicity in Rats. Antioxidants (Basel). 2020;9(10):1014. [DOI:10.3390/antiox9101014]
12. Kaushik ML, Kumari S, Ashawat MS. Protective modulatory potential of Azolla pinnata extract on lipid metabolism, hepatic dysfunctioning, along with mitigation of oxidative stress in Triton X-100 induced hyperlipidemic rats. Asian J Pharm Clin Res. 2025;18(10):147-57. [DOI:10.22159/ajpcr.2025v18i10.55783]
13. Kapić D, Mornjaković Z, Ćosović E, Šahinović M. A histological study of the effect of exogenous melatonin on gentamicin induced structural alterations of proximal tubules in rats. Bosn J Basic Med Sci. 2014;14(1):30-5. [DOI:10.17305/bjbms.2014.2293]
14. Hokmabadi V, Khalili A, Hashemi SA, Hedayatyanfard K, Parvari S, Changizi-Ashtiyani S, et al. Cannabidiol interacts with the FXR/Nrf2 pathway and changes the CB1/CB2 receptors ratio in gentamicin-induced kidney injury in rats. Iran J Basic Med Sci. 2023;26(3):343-50.
15. Nandi A, Yan LJ, Jana CK, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev. 2019;2019:9613090. [DOI:10.1155/2019/9613090]
16. Park JY, Han X, Piao MJ, Oh MC, Fernando PM, Kang KA. Hyperoside induces endogenous antioxidant system to alleviate oxidative stress. J Cancer Prev. 2016;21(1):41-7. [DOI:10.15430/JCP.2016.21.1.41]
17. Tran TLN, Miranda AF, Abeynayake SW, Mouradov A. Differential Production of Phenolics, Lipids, Carbohydrates and Proteins in Stressed and Unstressed Aquatic Plants, Azolla filiculoides and Azolla pinnata. Biology (Basel). 2020;9(10):342. [DOI:10.3390/biology9100342]
18. Thiripurasundari B, Padmini E. Preliminary Phytochemical Screening and Evaluation of Antimicrobial and Antioxidant Activity of Azolla Pinnata. Int J Recent Sci Res. 2018;9(5):26924-30.
19. Rahman SMA, Kamel MA, Ali MA, Alotaibi BS, Aharthy OM, Shukry M, et al. Comparative Study on the Phytochemical Characterization and Biological Activities of Azolla caroliniana and Azolla filiculoides: In Vitro Study. Plants (Basel). 2023;12(18):3229. [DOI:10.3390/plants12183229]
20. Masood A, Shah NA, Zeeshan M, Abraham G. Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ Exp Bot. 2006;58(1-3):216-22. [DOI:10.1016/j.envexpbot.2005.08.002]
21. Mahmoudzadeh L, Najafi H, Changizi-Ashtiyani S, Yarijani ZM. Anti‐inflammatory and protective effects of saffron extract in ischaemia/reperfusion‐induced acute kidney injury. Nephrology. 2017;22(10):748-54. [DOI:10.1111/nep.12849]
22. Bao Y, Ge YM, Wang Z, Niu WY, Li C, Ren Z, et al. Safranal Ameliorates Renal Damage, Inflammation, and Podocyte Injury in Membranous Nephropathy via SIRT/NF-κB Signalling. Curr Med Sci. 2025;45:288-300. [DOI:10.1007/s11596-025-00020-8]
23. Kumar A, Kumari J, Kumar H, Nath A, Singh J, Ali M, et al. Hepatoprotective and antioxidant effect of Azolla filiculoides on profenofos induced hepatotoxicity in swiss albino mice. Caribb J Sci Technol. 2014;2(1):372-7. [DOI:10.3923/jpt.2014.97.104]
24. Abdel-Raheem IT, Abdel-Ghany AA, Mohamed GA. Protective effect of quercetin against gentamicin-induced nephrotoxicity in rats. Biol Pharm Bull. 2009;32(1):61-7. [DOI:10.1248/bpb.32.61]
25. Albrakati A. Protective effects of quercetin against glyphosate-induced nephrotoxicity in rats: role of oxidative stress, inflammatory response, and apoptotic pathways. Front Vet Sci. 2025;12:1624763. [DOI:10.3389/fvets.2025.1624763]
26. Noor Nawaz A, Syed J, Dileep N, Rakesh K, Prashith Kekuda T. Antioxidant activity of Azolla pinnata and Azolla rubra--A comparative study. Sch Acad J Biosci. 2014;2(10):719-23.
27. Kim MR. Antioxidants of natural products. Antioxidants (Basel). 2021;16;10(4):612. [DOI:10.3390/antiox10040612]
28. Yin SH, Zhang WJ, Jiang LL, Wang GY, Jeon YJ, et al. Protective effects of the secondary metabolites from Quercus salicina Blume against gentamicin-induced nephrotoxicity in zebrafish (Danio rerio) model. Comp Biochem Physiol C Toxicol Pharmacol. 2024;283:109952. [DOI:10.1016/j.cbpc.2024.109952]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb