Volume 29, Issue 5 (9-2025)                   IBJ 2025, 29(5): 321-334 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi-Tamandegani H, Marashi S, Ghavami G, Mehrmohamadi M, Sardari* S. Genome-Scale Metabolic Modeling Identifies Synergistic Metabolites that Enhance 5-Fluorouracil Efficacy in Colon Cancer.. IBJ 2025; 29 (5) :321-334
URL: http://ibj.pasteur.ac.ir/article-1-5178-en.html
Abstract:  
Background: Colon cancer remains a leading cause of cancer-related mortality, with the efficacy of standard chemotherapy agents such as 5-FU limited by resistance and toxicity. This study aimed to identify metabolites that enhance 5-FU efficacy in CRC using GEM.
Methods: GEM was applied using the FVSEOF algorithm to identify metabolites that enhance the therapeutic efficacy of 5-FU in CRC. Context-specific metabolic models were constructed from TCGA data using the ftINIT algorithm. By simulating TS inhibition, we identified aspartate, lysine, and valine as candidate metabolites with altered uptake under constrained biomass production. Among them, lysine and valine are essential amino acids and were chosen for experimental validation using MTT assays and flow cytometry in HT-29 CRC cells and HU02 normal fibroblasts.
Results:
Our approach identified aspartate, lysine, and valine as candidate synergistic metabolites. Experimental validation confirmed the strong synergy of lysine and valine with 5-FU in HT-29 cells, while showing significantly reduced effects in normal fibroblasts. Mechanistic analysis suggested that these amino acids enhance nucleotide demand and metabolic activity, amplifying 5-FU-induced stress.
Conclusion: This study demonstrates synergistic interventions and introduces amino acid co-supplementation as a potential strategy to improve CRC therapy with reduced toxicity. To our knowledge, this is the first study to employ GEM for the systematic prediction of metabolites that synergize with 5-FU, aiming to improve therapeutic outcomes in CRC.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

References
1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. [DOI:10.3322/caac.21834]
2. Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics. 2023. CA Cancer J Clin. 2023;73(3):233-54. [DOI:10.3322/caac.21772]
3. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10-45. [DOI:10.3322/caac.21871]
4. Toloudi M, Apostolou P, Papasotiriou I. Efficacy of 5-FU or oxaliplatin monotherapy over combination therapy in colorectal cancer. J Cancer Ther. 2015;6(4):345-55. [DOI:10.4236/jct.2015.64037]
5. Miyazaki K, Shibahara T, Sato D, Uchida K, Suzuki H, Matsui H, et al. Influence of chemotherapeutic agents and cytokines on the expression of 5-fluorouracil-associated enzymes in human colon cancer cell lines. J Gastroenterol. 2006;41(2):140-50. [DOI:10.1007/s00535-005-1733-6]
6. Villar-Grimalt A, Candel MT, Massuti B, Lizon J, Sanchez B, Frau A, et al. A randomized phase II trial of 5-fluorouracil, with or without human interferon-β, for advanced colorectal cancer. Br J Cancer. 1999;80(5-6):786-91. [DOI:10.1038/sj.bjc.6690422]
7. Breul J, Jakse G, Forster G, Lampel A, Rohani A, Hartung R. 5-fluorouracil versus folinic acid and 5-fluorouracil in advanced, hormone-resistant prostate cancer: A prospective, randomized pilot trial. Eur Urol. 1997;32(3):280-3. [DOI:10.1159/000480825]
8. Fotheringham S, Mozolowski GA, Murray EM, Kerr DJ. Challenges and solutions in patient treatment strategies for stage II colon cancer. Gastroenterol Rep. 2019;7(3):151-61. [DOI:10.1093/gastro/goz006]
9. Qayum A, Magotra A, Shah SM, Nandi U, Sharma P, Shah BA, et al. Synergistic combination of PMBA and 5-fluorouracil (5-FU) in targeting mutant KRAS in 2D and 3D colorectal cancer cells. Heliyon. 2022;8(4):09103. [DOI:10.1016/j.heliyon.2022.e09103]
10. Taghizadeh H, Prager GW. Personalized adjuvant treatment of colon cancer. Visc Med. 2020;36(5):397-406. [DOI:10.1159/000508175]
11. Larsson I, Uhlén M, Zhang C, Mardinoglu A. Genome-scale metabolic modeling of glioblastoma reveals promising targets for drug development. Front Genet. 2020;11:381. [DOI:10.3389/fgene.2020.00381]
12. Robinson JL, Nielsen J. Anticancer drug discovery through genome-scale metabolic modeling. Curr Opin Syst Biology. 2017;4:1-8. [DOI:10.1016/j.coisb.2017.05.007]
13. Zhang M, Saad C, Le L, Halfter K, Bauer B, Mansmann UR, et al. Computational modeling of methionine cycle-based metabolism and DNA methylation and the implications for anti-cancer drug response prediction. Oncotarget. 2018;9(32):22546-58. [DOI:10.18632/oncotarget.24547]
14. Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling. Mol Syst Biol. 2014;10(3):721. [DOI:10.1002/msb.145122]
15. Turanli B, Zhang C, Kim W, Benfeitas R, Uhlen M, Arga KY, et al. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine. 2019;42:386-96. [DOI:10.1016/j.ebiom.2019.03.009]
16. Murphy RA, Mourtzakis M, Chu QS, Baracos VE, Reiman T, Mazurak VC. Supplementation with fish oil increases first‐line chemotherapy efficacy in patients with advanced nonsmall cell lung cancer. Cancer. 2011;117(16):3774-80. [DOI:10.1002/cncr.25933]
17. Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M, et al. Dietary methionine links nutrition and metabolism to the efficacy of cancer therapies. Nature. 2019;572(7769):397-401. [DOI:10.1038/s41586-019-1437-3]
18. Paccagnella A, Morello M, Da Mosto MC, Baruffi C, Marcon ML, Gava A, et al. Early nutritional intervention improves treatment tolerance and outcomes in head and neck cancer patients undergoing concurrent chemoradiotherapy. Support Care Cancer. 2010;18(7):837-45. [DOI:10.1007/s00520-009-0717-0]
19. Kuo Y-R, Lin C-H, Lin W-S, Pan M-H. L‐Glutamine substantially improves 5‐fluorouracil‐induced intestinal mucositis by modulating gut microbiota and maintaining the integrity of the gut barrier in mice. Mol Nutr Food Res. 2024;68(9):2300704. [DOI:10.1002/mnfr.202300704]
20. Chen Z, Xu J, Fang K, Jiang H, Leng Z, Wu H, et al. FOXC1-mediated serine metabolism reprogramming enhances colorectal cancer growth and 5-FU resistance under serine restriction. Cell Commun Signal. 2025;23(1):13. [DOI:10.1186/s12964-024-02016-8]
21. Jornada DH, Boreski D, Chiba DE, Ligeiro D, Luz MAM, Gabriel EA, et al. Synergistic enhancement of 5-fluorouracil chemotherapeutic efficacy by taurine in colon cancer rat model. Nutrients. 2024;16(18):3047. [DOI:10.3390/nu16183047]
22. Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M, et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572(7769):397-401. [DOI:10.1038/s41586-019-1437-3]
23. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):71. [DOI:10.1093/nar/gkv1507]
24. Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. Plos Comput Biol. 2008;4(5):1000082. [DOI:10.1371/journal.pcbi.1000082]
25. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. Plos Comput Biol. 2012;8(5):1002518. [DOI:10.1371/journal.pcbi.1002518]
26. Gustafsson J, Anton M, Roshanzamir F, Jörnsten R, Kerkhoven EJ, Robinson JL, et al. Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data. Proc Natl Acad Sci U S A. 2023;120(6):2217868120. [DOI:10.1073/pnas.2217868120]
27. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nat Protoc. 2019;14(3):639-702. [DOI:10.1038/s41596-018-0098-2]
28. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. Plos Comput Biol. 2013;9(3):1002980. [DOI:10.1371/journal.pcbi.1002980]
29. Fouladiha H, Marashi S-A, Torkashvand F, Mahboudi F, Lewis NE, Vaziri B. A metabolic network-based approach for developing feeding strategies for CHO cells to increase monoclonal antibody production. Bioprocess Biosyst Eng. 2020;43(8):1381-9. [DOI:10.1007/s00449-020-02332-6]
30. Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621-81. [DOI:10.1124/pr.58.3.10]
31. De Angelis PM, Svendsrud DH, Kravik KL, Stokke T. Cellular response to 5-fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery. Mol Cancer. 2006;5(1):20. [DOI:10.1186/1476-4598-5-20]
32. Rodrigues D, de Souza T, Coyle L, Di Piazza M, Herpers B, Ferreira S, et al. New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Arch Toxicol. 2021;95(8):2691-718. [DOI:10.1007/s00204-021-03092-2]
33. Sharma S, Zhang X, Azhar G, Patyal P, Verma A, Kc G, et al. Valine improves mitochondrial function and protects against oxidative stress. Biosci Biotechnol Biochem. 2024;88(2):168-76. [DOI:10.1093/bbb/zbad169]
34. Houten SM, Dodatko T, Dwyer W, Violante S, Chen H, Stauffer B, et al. Acyl‐CoA dehydrogenase substrate promiscuity: Challenges and opportunities for development of substrate reduction therapy in disorders of valine and isoleucine metabolism. J Inherit Metab Dis. 2023;46(5):931-42. [DOI:10.1002/jimd.12642]
35. Taniguchi K, Nonami T, Nakao A, Harada A, Kurokawa T, Sugiyama S, et al. The valine catabolic pathway in human liver: Effect of cirrhosis on enzyme activities. Hepatology. 1996;24(6):1395-8. [DOI:10.1002/hep.510240614]
36. Guo Y, Wu J, Wang M, Wang X, Jian Y, Yang C, et al. The metabolite saccharopine impairs neuronal development by inhibiting the neurotrophic function of glucose-6-phosphate isomerase. J Neurosci. 2022;42(13):2631-46. [DOI:10.1523/JNEUROSCI.1459-21.2022]
37. Hallen A, Jamie JF, Cooper AJ. Lysine metabolism in mammalian brain: An update on the importance of recent discoveries. Amino Acids. 2013;45(6):1249-72. [DOI:10.1007/s00726-013-1590-1]
38. Guertin DA, Wellen KE. Acetyl-CoA metabolism in cancer. Nat Rev Cancer. 2023;23(3):156-72. [DOI:10.1038/s41568-022-00543-5]
39. Bidgood CL, Philp LK, Rockstroh A, Lehman M, Nelson CC, Sadowski MC, et al. Targeting valine catabolism to inhibit metabolic reprogramming in prostate cancer. Cell Death Dis. 2024;15(7):513. [DOI:10.1038/s41419-024-06893-2]
40. Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol. 2022;13:972312. [DOI:10.3389/fendo.2022.972312]
41. Takahara T, Amemiya Y, Sugiyama R, Maki M, Shibata H. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes. J Biomed Sci. 2020;27(1):87. [DOI:10.1186/s12929-020-00679-2]
42. Park JM, Park HM, Kim WJ, Kim HU, Kim TY, Lee SY. Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Systems Biology. 2012;6(1):106. [DOI:10.1186/1752-0509-6-106]
43. Liu J, Gao Q, Xu N, Liu L. Genome-scale reconstruction and in silico analysis of Aspergillus terreus metabolism. Mol Biosyst. 2013;9(7):1939-48. [DOI:10.1039/c3mb70090a]
44. Jordan A, Stein J. Effect of an omega-3 fatty acid containing lipid emulsion alone and in combination with 5-fluorouracil (5-FU) on growth of the colon cancer cell line Caco-2. Eur J Nutr. 2003;42(6):324-31. [DOI:10.1007/s00394-003-0427-1]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb