1. Arora T, Mullangi S, Vadakekut ES, Lekkala MR. Epithelial ovarian cancer. [Updated 2024 May 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK567760/.
2. Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, et al. Global Cancer Observatory. International Agency for Research on Cancer. 2024. Available from: https://gco.iarc.who.int/media/globocan/factsheets/populations/591-panama-fact-sheet.pdf
3. Tavares V, Marques IS, de Melo IG, Assis J, Pereira D, Medeiros R. Paradigm shift: A comprehensive review of ovarian cancer management in an era of advancements. Int J Mol Sci. 2024;25(3):1845. [
DOI:10.3390/ijms25031845]
4. Saha S, Parte S, Roy P, Kakar SS. Ovarian cancer stem cells: Characterization and role in tumorigenesis. Adv Exp Med Biol. 2021:1330:151-69. [
DOI:10.1007/978-3-030-73359-9_10]
5. Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, et al. Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther. 2024;9(1):170. [
DOI:10.1038/s41392-024-01851-y]
6. Nowicki A, Kulus M, Wieczorkiewicz M, Pieńkowski W, Stefańska K, Skupin-Mrugalska P, et al. Ovarian cancer and cancer stem cells-cellular and molecular characteristics, signaling pathways, and usefulness as a diagnostic tool in medicine and oncology. Cancers. 2021;13(16):4178 [
DOI:10.3390/cancers13164178]
7. Alizadeh H, Akbarabadi P, Dadfar A, Tareh MR, Soltani B. A comprehensive overview of ovarian cancer stem cells: Correlation with high recurrence rate, underlying mechanisms, and therapeutic opportunities. Mol Cancer. 2025;24(1):135. [
DOI:10.1186/s12943-025-02345-3]
8. Raghavan S, Mehta P, Xie Y, Lei YL, Mehta G. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J Immunother Cancer. 2019;7(1):190. [
DOI:10.1186/s40425-019-0666-1]
9. Frąszczak K, Barczyński B. The role of cancer stem cell markers in ovarian cancer. Cancers. 2023;16(1):40. [
DOI:10.3390/cancers16010040]
10. Ding J, Zhang Y, Che Y. Ovarian cancer stem cells: Critical roles in anti-tumor immunity. Front Genet. 2022:13:998220. [
DOI:10.3389/fgene.2022.998220]
11. Muñoz-Galván S, Carnero A. Targeting cancer stem cells to overcome therapy resistance in ovarian cancer. Cells. 2020;9(6):1402. [
DOI:10.3390/cells9061402]
12. Iluta S, Nistor M, Buruiana S, Dima D. Wnt signaling pathway in tumor biology. Genes. 2024;15(12):1597. [
DOI:10.3390/genes15121597]
13. Ranes M, Zaleska M, Sakalas S, Knight R, Guettler S. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation. Mol Cell. 2021;81(16):3246-61. [
DOI:10.1016/j.molcel.2021.07.013]
14. Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, et al. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 2024;17(1):46. [
DOI:10.1186/s13045-024-01563-4]
15. Muñoz-Galván S, Carnero A. Targeting cancer stem cells to overcome therapy resistance in ovarian cancer. Cells. 2020;9(6):1402. [
DOI:10.3390/cells9061402]
16. Nguyen VHL, Hough R, Bernaudo S, Peng C. Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J Ovarian Res. 2019;12(1):122. [
DOI:10.1186/s13048-019-0596-z]
17. Basu S, Nadhan R, Dhanasekaran DN. Long non-coding RNAs in ovarian cancer: Mechanistic insights and clinical applications. Cancers. 2025;17(3):472. [
DOI:10.3390/cancers17030472]
18. Chen Z, Zhu Y, Fan X, Liu Y, Feng Q. Upregulation of long non coding RNA CCEPR is associated with poor prognosis and contributes to the progression of ovarian cancer through regulating the Wnt/β catenin signaling pathway. Mol Med Rep. 2020;21(4):1950-8. [
DOI:10.3892/mmr.2020.10979]
19. Zhu L, Li N. Downregulation of long noncoding RNA TUSC7 promoted cell growth, invasion and migration through sponging with miR-616-5p/GSK3β pathway in ovarian cancer. Eur Rev Med Pharmacol Sci. 2020;24(13):7253-65.
20. Zhang L-Y, Chen Y, Jia J, Zhu X, He Y, Wu L-M. MiR-27a promotes EMT in ovarian cancer through active Wnt/β-catenin signalling by targeting FOXO1. Cancer Biomark. 2019;24(1):31-42. [
DOI:10.3233/CBM-181229]
21. Li N, Yang L, Sun Y, Wu X. MicroRNA 16 inhibits migration and invasion via regulation of the Wnt/β catenin signaling pathway in ovarian cancer. Oncol Lett. 2019;17(3):2631-8. [
DOI:10.3892/ol.2019.9923]
22. Belur Nagaraj A, Knarr M, Sekhar S, Connor RS, Joseph P, Kovalenko O, et al. The mir-181a-SFRP4 axis regulates Wnt activation to drive stemness and platinum resistance in ovarian cancer. Cancer Res. 2021;81(8):2044-55. [
DOI:10.1158/0008-5472.CAN-20-2041]
23. Liu W, Zhan Z, Zhang M, Sun B, Shi Q, Luo F, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11(13):6278-92. [
DOI:10.7150/thno.57455]
24. Wang Y, Zhao G, Condello S, Huang H, Cardenas H, Tanner EJ, et al. Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 2021;81(2):384-99. [
DOI:10.1158/0008-5472.CAN-20-1488]
25. Ruan X, Liu A, Zhong M, Wei J, Zhang W, Rong Y, et al. Silencing LGR6 attenuates stemness and chemoresistance via inhibiting Wnt/β-catenin signaling in ovarian cancer. Mol Ther Oncolytics. 2019:14:94-106. [
DOI:10.1016/j.omto.2019.04.002]
26. Mei S, Chen X, Wang K, Chen Y. Tumor microenvironment in ovarian cancer peritoneal metastasis. Cancer Cell Int. 2023;23(1):11. [
DOI:10.1186/s12935-023-02854-5]
27. Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells-a clinical update. Nat Rev Clin Oncol. 2020;17(4):204-32. [
DOI:10.1038/s41571-019-0293-2]
28. Ma H, Tian T, Cui Z. Targeting ovarian cancer stem cells: A new way out. Stem Cell Res Ther. 2023;14(1):28. [
DOI:10.1186/s13287-023-03244-4]
29. Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapyPerez-Fidalgo JA, Ortega B, Simon S, Samartzis EP, Boussios S. Notch signalling in ovarian cancer angiogenesis. Ann Transl Med. 2020;8(24):1705. [
DOI:10.21037/atm-20-4497]
30. Perez-Fidalgo JA, Ortega B, Simon S, Samartzis EP, Boussios S. Notch signalling in ovarian cancer angiogenesis. Ann Transl Med. 2020;8(24):1705. [
DOI:10.21037/atm-20-4497]
31. Zhang L, Ma R, Gao M, Zhao Y, Lv X, Zhu W, et al. SNORA72 activates the Notch1/c-Myc pathway to promote stemness transformation of ovarian cancer cells. Front Cell Dev Biol. 2020:8:583087. [
DOI:10.3389/fcell.2020.583087]
32. Liu Z, Zhu Y, Li F, Xie Y. GATA1-regulated JAG1 promotes ovarian cancer progression by activating Notch signal pathway. Protoplasma. 2020;257(3):901-10. [
DOI:10.1007/s00709-019-01477-w]
33. Keyvani V, Kazemi Nezhad SR, Moghbeli M, Mollazadeh S, Abbaszadegan MR. Isolation and eradication of ovarian CD44+ cancer stem cells via Notch signaling pathway mediated by ectopic silence of MAML1. Iran Red Crescent Med J. 2022;24(4):e1748.
34. Yang L, Yang M, Cui C, Long X, Li Y, Dai W, et al. The myo-inositol biosynthesis rate-limiting enzyme ISYNA1 suppresses the stemness of ovarian cancer via Notch1 pathway. Cell Signal. 2023:107:110688. [
DOI:10.1016/j.cellsig.2023.110688]
35. Allam H, Johnson BP, Zhang M, Lu Z, Cannon MJ, Abbott KL. The glycosyltransferase GnT-III activates Notch signaling and drives stem cell expansion to promote the growth and invasion of ovarian cancer. J Biol Chem. 2017;292(39):16351-9. [
DOI:10.1074/jbc.M117.783936]
36. Islam SS, Al-Mohanna FH, Yousef IM, Al-Badawi IA, Aboussekhra A. Ovarian tumor cell-derived JAGGED2 promotes omental metastasis through stimulating the Notch signaling pathway in the mesothelial cells. Cell Death Dis. 2024;15(4):247. [
DOI:10.1038/s41419-024-06512-0]
37. Jordan GJ, Gallo C, Robinson M, Lujano-Olazaba O, House CD. Abstract 5: Noncanonical NF-kB and Notch signaling activity supports ovarian cancer stem-like cells following chemotherapy. Cancer Res. 2025;85(8):5. [
DOI:10.1158/1538-7445.AM2025-5]
38. Sigafoos AN, Paradise BD, Fernandez-Zapico ME. Hedgehog/GLI signaling pathway: Transduction, regulation, and implications for disease. Cancers. 2021;13(14):3410. [
DOI:10.3390/cancers13143410]
39. Sneha S, Nagare RP, Sidhanth C, Krishnapriya S, Garg M, Ramachandran B, et al. The hedgehog pathway regulates cancer stem cells in serous adenocarcinoma of the ovary. Cell Oncol. 2020;43(4):601-16. [
DOI:10.1007/s13402-020-00504-w]
40. Yan X, Yang Y, Guan H, Zhang X, Li L, Yu P. Exosomal LINC00958 maintains ovarian cancer cell stemness and induces M2 macrophage polarization via Hedgehog signaling pathway and GLI1 protein. Int J Biol Macromol. 2024;279(1):135080. [
DOI:10.1016/j.ijbiomac.2024.135080]
41. Salman ND, Hanker LC, Győrffy B, Bartha Á, Proppe L, Götte M. The prognostic value of the Hedgehog signaling pathway in ovarian cancer. Int J Mol Sci. 2025;26(12):5888. [
DOI:10.3390/ijms26125888]
42. Zhao H, Li N, Pang Y, Zhao J, Wu X. Gli affects the stemness and prognosis of epithelial ovarian cancer via homeobox protein NANOG. Mol Med Rep. 2020;23(2):128. [
DOI:10.3892/mmr.2020.11767]
43. Nieddu V, Melocchi V, Battistini C, Franciosa G, Lupia M, Stellato C, et al. Matrix Gla protein drives stemness and tumor initiation in ovarian cancer. Cell Death Dis. 2023;14(3):220. [
DOI:10.1038/s41419-023-05760-w]
44. Tang C, Li L, Zhu C, Xu Q, An Z, Xu S, et al. GPR137-RAB8A activation promotes ovarian cancer development via the Hedgehog pathway. J Exp Clin Cancer Res. 2025;44(1):22. [
DOI:10.1186/s13046-025-03275-0]
45. Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, et al. The role of Notch, Hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies. Front Cell Dev Biol. 2021:9:650772. [
DOI:10.3389/fcell.2021.650772]
46. Bocchicchio S, Tesone M, Irusta G. Convergence of Wnt and Notch signaling controls ovarian cancer cell survival. J Cell Physiol. 2019;234(12):22130-43. [
DOI:10.1002/jcp.28775]
47. Bao H, Wu W, Li Y, Zong Z, Chen S. WNT6 participates in the occurrence and development of ovarian cancer by upregulating/activating the typical Wnt pathway and Notch1 signaling pathway. Gene. 2022:846:146871. [
DOI:10.1016/j.gene.2022.146871]
48. Chen X, Stoeck A, Lee SJ, Shih I-M, Wang MM, Wang T-L. Jagged1 expression regulated by Notch3 and Wnt/β-catenin signaling pathways in ovarian cancer. Oncotarget. 2010;1(3):210-8. [
DOI:10.18632/oncotarget.127]
49. Kang HG, Kim D-H, Kim S-J, Cho Y, Jung J, Jang W, et al. Galectin-3 supports stemness in ovarian cancer stem cells by activation of the Notch1 intracellular domain. Oncotarget. 2016;7(42):68229-41. [
DOI:10.18632/oncotarget.11920]
50. Fendler A, Bauer D, Busch J, Jung K, Wulf-Goldenberg A, Kunz S, et al. Inhibiting Wnt and Notch in renal cancer stem cells and the implications for human patients. Nat Commun. 2020;11(1):929. [
DOI:10.1038/s41467-020-14700-7]
51. Schmid S, Bieber M, Zhang F, Zhang M, He B, Jablons D, et al. Wnt and Hedgehog gene pathway expression in serous ovarian cancer. Int J Gynecol Cancer. 2011;21(6):975-80. [
DOI:10.1097/IGC.0b013e31821caa6f]
52. Schmid S, Zhang F, Zhang M, He B, Jablons D, Teng N. Interactions and dynamics of hedgehog and Wnt pathway activation levels in ovarian cancer cell lines. J Clin Oncol. 2010;28(15):15515. [
DOI:10.1200/jco.2010.28.15_suppl.e15515]
53. Wang X, Song X, Gao J, Xu G, Yan X, Yang J, et al. Hedgehog/Gli2 signaling triggers cell proliferation and metastasis via EMT and wnt/β-catenin pathways in oral squamous cell carcinoma. Heliyon. 2024;10(16):e36516. [
DOI:10.1016/j.heliyon.2024.e36516]
54. Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog signaling unveiled: Crosstalk, roles, and breakthroughs in cancer stem cell research. Life. 2025;15(2):228. [
DOI:10.3390/life15020228]
55. Chang WH, Lai AG. Aberrations in Notch-Hedgehog signaling reveal cancer stem cells harbouring conserved oncogenic properties associated with hypoxia and immunoevasion. Br J Cancer. 2019;121(8):666-78. [
DOI:10.1038/s41416-019-0572-9]
56. Steg AD, Katre AA, Goodman B, Han H-D, Nick AM, Stone RL, et al. Targeting the Notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer. Clin Cancer Res. 2011;17(17):5674-85. [
DOI:10.1158/1078-0432.CCR-11-0432]
57. Citarella A, Catanzaro G, Besharat ZM, Trocchianesi S, Barbagallo F, Gosti G, et al. Hedgehog-GLI and Notch pathways sustain chemoresistance and invasiveness in colorectal cancer and their inhibition restores chemotherapy efficacy. Cancers. 2023;15(5):1471. [
DOI:10.3390/cancers15051471]
58. Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting cancer stemness in the clinic: From hype to hope. Cell Stem Cell. 2019;24(1):25-40. [
DOI:10.1016/j.stem.2018.11.017]
59. Gounder M, Ratan R, Alcindor T, Schöffski P, van der Graaf WT, Wilky BA, et al. Nirogacestat, a γ-secretase inhibitor for desmoid tumors. N Engl J Med. 2023;388(10):898-912. [
DOI:10.1056/NEJMoa2210140]
60. Kummar S, Bui N, Messersmith WA, Whiting J, Portnoy M, Lim A, et al. Nirogacestat-the pathway to approval of the first treatment for desmoid tumors, a rare disease. Ther Adv Rare Dis. 2025:6:7546. [
DOI:10.1177/26330040251317546]
61. Sekulic A, Migden MR, Basset-Seguin N, Garbe C, Gesierich A, Lao CD, et al. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: Final update of the pivotal ERIVANCE BCC study. BMC Cancer. 2017;17(1):332. [
DOI:10.1186/s12885-017-3286-5]
62. Dummer R, Guminksi A, Gutzmer R, Lear JT, Lewis KD, Chang ALS, et al. Long‐term efficacy and safety of sonidegib in patients with advanced basal cell carcinoma: 42‐month analysis of the phase II randomized, double‐blind BOLT study. Br J Dermatol. 2020;182(6):1369-78. [
DOI:10.1111/bjd.18552]
63. Liew KB, Phang HC, Tan VYX, Kee PE, Ming LC, Kumar PV, et al. Nanoparticles as novel drug delivery systems for cancer treatment: Current status and future perspectives. Curr Pharm Des. 2025;31(39):3117-27. [
DOI:10.2174/0113816128368718250320060346]
64. Carr DF, Turner RM, Pirmohamed M. Pharmacogenomics of anticancer drugs: Personalising the choice and dose to manage drug response. Br J Clin Pharmacol. 2021;87(2):237-55. [
DOI:10.1111/bcp.14407]
65. Brixner D, Richardson T, Lockhart CM, Ramsey S, Fox J, Pritchard D, et al. Optimization of oncology biomarker testing in managed care: Best practices and consensus recommendations from an AMCP market insights program. J Manag Care Spec Pharm. 2025;31(6):1-14. [
DOI:10.18553/jmcp.2025.31.6-a.s1]
66. Anderson PM, Thomas SM, Sartoski S, Scott JG, Sobilo K, Bewley S, et al. Strategies to mitigate chemotherapy and radiation toxicities that affect eating. Nutrients. 2021;13(12):4397. [
DOI:10.3390/nu13124397]
67. Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signalling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol. 2019:109:23-32. [
DOI:10.1016/j.biocel.2019.01.016]
68. Deng S, Wong CKC, Lai H-C, Wong AST. Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition. Oncotarget. 2017;8(16):25897-914. [
DOI:10.18632/oncotarget.13071]
69. Pan H, Kim E, Rankin GO, Rojanasakul Y, Tu Y, Chen YC. Theaflavin-3,3′-digallate inhibits ovarian cancer stem cells via suppressing Wnt/β-Catenin signaling pathway. J Funct Foods. 2018:50:1-7. [
DOI:10.1016/j.jff.2018.09.021]
70. Lee H, Kwon O-B, Lee J-E, Jeon Y-H, Lee D-S, Min S-H, et al. Repositioning trimebutine maleate as a cancer treatment targeting ovarian cancer stem cells. Cells. 2021;10(4):918. [
DOI:10.3390/cells10040918]
71. Moore KN, Gunderson CC, Sabbatini P, McMeekin DS, Mantia-Smaldone G, Burger RA, et al. A phase 1b dose escalation study of ipafricept (OMP54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer. Gynecol Oncol. 2019;154(2):294-301. [
DOI:10.1016/j.ygyno.2019.04.001]
72. Doo DW, Meza-Perez S, Londoño AI, Goldsberry WN, Katre AA, Boone JD, et al. Inhibition of the Wnt/β-catenin pathway enhances antitumor immunity in ovarian cancer. Ther Adv Med Oncol. 2020:12:3798. [
DOI:10.1177/1758835920913798]
73. Zhang C, Zhang Z, Zhang S, Wang W, Hu P. Targeting of Wnt/β-catenin by anthelmintic drug pyrvinium enhances sensitivity of ovarian cancer cells to chemotherapy. Med Sci Monit. 2017:23:266-75. [
DOI:10.12659/MSM.901667]
74. Diaz-Padilla I, Wilson MK, Clarke BA, Hirte HW, Welch SA, Mackay HJ, et al. A phase II study of single-agent RO4929097, a gamma-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: A study of the Princess Margaret, Chicago and California phase II consortia. Gynecol Oncol. 2015;137(2):216-22. [
DOI:10.1016/j.ygyno.2015.03.005]
75. Xiaoxiao Y, Nan Z. Gamma secretase inhibitors inhibit ovarian cancer development and enhance olaparib's anti-ovarian cancer activity and its mechanism. 2020. Available from: https://www.biorxiv.org/content/10.1101/2020.05.19.103853v1. [
DOI:10.1101/2020.05.19.103853]
76. Fu S, Corr BR, Culm-Merdek K, Mockbee C, Youssoufian H, Stagg R, et al. Phase Ib study of navicixizumab plus paclitaxel in patients with platinum-resistant ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol. 2022;40(23):2568-77. [
DOI:10.1200/JCO.21.01801]
77. Smith DC, Chugh R, Patnaik A, Papadopoulos KP, Wang M, Kapoun AM, et al. A phase 1 dose escalation and expansion study of Tarextumab (OMP-59R5) in patients with solid tumors. Invest New Drugs. 2019;37(4):722-30. [
DOI:10.1007/s10637-018-0714-6]
78. Islam SS, Aboussekhra A. Sequential combination of cisplatin with eugenol targets ovarian cancer stem cells through the Notch-Hes1 signalling pathway. J Exp Clin Cancer Res. 2019;38(1):382. [
DOI:10.1186/s13046-019-1360-3]
79. Arend RC, Bae S, Doo DW, Alvarez RD, Straughn JM, Bevis KS, et al. Phase IB dose escalation and expansion trial of the oral hedgehog inhibitor sonidegib (LDE225) and weekly paclitaxel in platinum-resistant ovarian cancer (NCT02195973). Int J Gynecol Cancer. 2016:74:257.
80. Ho GY, Lieschke E, Kyran E, Shield-Artin K, Kondrashova O, Barker H, et al. Hedgehog inhibition impaired platinum response in high-grade serous ovarian cancer harboring high hedgehog ligand expression and mTOR pathway activation. J Clin Oncol. 2017;35(15):5583. [
DOI:10.1200/JCO.2017.35.15_suppl.5583]
81. Mani C, Tripathi K, Chaudhary S, Somasagara RR, Rocconi RP, Crasto C, et al. Hedgehog/GLI1 transcriptionally regulates FANCD2 in ovarian tumor cells: Its inhibition induces HR-deficiency and synergistic lethality with PARP inhibition. Neoplasia. 2021;23(9):1002-15. [
DOI:10.1016/j.neo.2021.06.010]