Volume 29, Issue 5 (9-2025)                   IBJ 2025, 29(5): 279-293 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fallah Huseini H, Haghighi M, Kianbakht S, Ziaee M. Persian Medicinal Plants as Antidiabetic Agents: Mechanisms and Evidence from Bench to Bedside. IBJ 2025; 29 (5) :279-293
URL: http://ibj.pasteur.ac.ir/article-1-5073-en.html
Abstract:  
The use of medicinal plants by diabetic patients dates back to ancient times. In recent years, numerous reports have been published on the efficacy and safety of many medicinal plants in the treatment of diabetes through various mechanisms. This review highlights the up-to-date proposed mechanisms of action of the most common antidiabetic herbs used in Persian medicine, comprising Cinnamomum zeylanicum, Trigonella foenum-graecum, Urtica dioica, Nigella sativa, Citrullus colocynthis, Silybum marianum, Zingiber officinale, Punica granatum, Salvia officinalis, Vaccinium arctostaphylos, and Momordica charantia, with support from clinical and experimental studies. Clinical research has shown significant reductions in blood glucose levels and insulin resistance, as well as improvements in diabetes-related symptoms, including digestive disorders and lipid dysregulation, accompanied by negligible adverse effects. Continuing to study how these plants work and how effectively they treat diabetes is important for using these natural treatments in modern medicine, offering affordable and safe options for diabetes patients.
Type of Study: Review Article | Subject: Related Fields

References
1. Farzaei F, Morovati MR, Farjadmand F, Farzaei MH. A mechanistic review on medicinal plants used for diabetes mellitus in traditional Persian medicine. Journal of evidence-based complementary & alternative medicine. 2017;22(4):944-55. [DOI:10.1177/2156587216686461]
2. Kumar S, Mittal A, Babu D, Mittal A. Herbal medicines for diabetes management and its secondary complications. Current diabetes reviews. 2021;17(4):437-56. [DOI:10.2174/18756417MTExfMTQ1z]
3. Balbaa M, El-Zeftawy M, Abdulmalek SA. Therapeutic screening of herbal remedies for the management of diabetes. Molecules. 2021;26(22):6836. [DOI:10.3390/molecules26226836]
4. Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, et al. Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Frontiers in endocrinology. 2022;13:800714. [DOI:10.3389/fendo.2022.800714]
5. Rekha N, Balaji R, Deecaraman M. Antihyperglycemic and antihyperlipidemic effects of extracts of the pulp of Syzygium cumini and bark of Cinnamon zeylanicum in streptozotocin-induced diabetic rats. J Appl Biosci. 2010;28(1):1718-30.
6. Zahmatkesh M, Fallah Huseini H, Hajiaghaee R, Heidari M, Mehrafarin A, Tavakoli-Far B. The effects of Cinnamomum zeylanicum J. Presl on blood glucose level in patients with type 2 diabetes, a double-blind clinical trial. Journal of Medicinal Plants. 2012;11(41):258-63.
7. Alizadeh Behbahani B, Falah F, Lavi Arab F, Vasiee M, Tabatabaee Yazdi F. Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evidence-based complementary and alternative medicine. 2020;2020. [DOI:10.1155/2020/5190603]
8. Guo X, Sun W, Huang L, Wu L, Hou Y, Qin L, et al. Effect of cinnamaldehyde on glucose metabolism and vessel function. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2017;23:3844. [DOI:10.12659/MSM.906027]
9. Al-Trad B, Alkhateeb H, Alsmadi W, Al-Zoubi M. Eugenol ameliorates insulin resistance, oxidative stress and inflammation in high fat-diet/streptozotocin-induced diabetic rat. Life sciences. 2019;216:183-8. [DOI:10.1016/j.lfs.2018.11.034]
10. Cao H, Polansky MM, Anderson RA. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Archives of biochemistry and biophysics. 2007;459(2):214-22. [DOI:10.1016/j.abb.2006.12.034]
11. Couturier K, Batandier C, Awada M, Hininger-Favier I, Canini F, Anderson RA, et al. Cinnamon improves insulin sensitivity and alters the body composition in an animal model of the metabolic syndrome. Archives of biochemistry and biophysics. 2010;501(1):158-61. [DOI:10.1016/j.abb.2010.05.032]
12. Li W, Qiao J, Lin K, Sun P, Wang Y, Peng Q, et al. Ethyl-acetate fraction from a cinnamon-cortex extract protects pancreatic β-cells from oxidative stress damage. Frontiers in Pharmacology. 2023;14:1111860. [DOI:10.3389/fphar.2023.1111860]
13. Azimi P, Ghiasvand R, Feizi A, Hariri M, Abbasi B. Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. The review of diabetic studies: RDS. 2014;11(3):258. [DOI:10.1900/RDS.2014.11.258]
14. Adisakwattana S, Lerdsuwankij O, Poputtachai U, Minipun A, Suparpprom C. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Plant Foods for Human Nutrition. 2011;66:143-8. [DOI:10.1007/s11130-011-0226-4]
15. Hlebowicz J, Darwiche G, Björgell O, Almér L-O. Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. The American journal of clinical nutrition. 2007;85(6):1552-6. [DOI:10.1093/ajcn/85.6.1552]
16. Qi L, Mao H, Lu X, Shi T, Wang J. Cinnamaldehyde promotes the intestinal barrier functions and reshapes gut microbiome in early weaned rats. Frontiers in nutrition. 2021;8:748503. [DOI:10.3389/fnut.2021.748503]
17. Van Hul M, Geurts L, Plovier H, Druart C, Everard A, Ståhlman M, et al. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology-Endocrinology and Metabolism. 2018;314(4):E334-E52. [DOI:10.1152/ajpendo.00107.2017]
18. Syed QA, Rashid Z, Ahmad MH, Shukat R, Ishaq A, Muhammad N, et al. Nutritional and therapeutic properties of fenugreek (Trigonella foenum-graecum): a review. International Journal of Food Properties. 2020;23(1):1777-91. [DOI:10.1080/10942912.2020.1825482]
19. Huseini HF, Fakhrzadeh H, Larijani B, Samani AS. Review of anti-diabetic medicinal plant used in traditional medicine. 2006.
20. Bano D, Tabassum H, Ahmad A, Mabood A, Ahmad IZ. The medicinal significance of the bioactive compounds of Trigonella foenum-graecum: a review. International Journal of Research in Ayurveda & Pharmacy. 2016;7(4):84-91. [DOI:10.7897/2277-4343.074139]
21. Snehlata HS, Payal DR. Fenugreek (Trigonella foenum-graecum L.): an overview. 2012.
22. Gong J, Fang K, Dong H, Wang D, Hu M, Lu F. Effect of fenugreek on hyperglycaemia and hyperlipidemia in diabetes and prediabetes: a meta-analysis. Journal of ethnopharmacology. 2016;194:260-8. [DOI:10.1016/j.jep.2016.08.003]
23. Shabil M, Bushi G, Bodige PK, Maradi PS, Patra BP, Padhi BK, et al. Effect of fenugreek on hyperglycemia: a systematic review and meta-analysis. Medicina. 2023;59(2):248. [DOI:10.3390/medicina59020248]
24. Fakhr L, Chehregosha F, Zarezadeh M, Chaboksafar M, Tarighat-Esfanjani A. Effects of fenugreek supplementation on the components of metabolic syndrome: A systematic review and dose-response meta-analysis of randomized clinical trials. Pharmacological Research. 2023;187:106594. [DOI:10.1016/j.phrs.2022.106594]
25. Losso JN, Holliday DL, Finley JW, Martin RJ, Rood JC, Yu Y, et al. Fenugreek bread: a treatment for diabetes mellitus. Journal of medicinal food. 2009;12(5):1046-9. [DOI:10.1089/jmf.2008.0199]
26. Kiss R, Szabó K, Gesztelyi R, Somodi S, Kovács P, Szabó Z, et al. Insulin-sensitizer effects of fenugreek seeds in parallel with changes in plasma MCH levels in healthy volunteers. International journal of molecular sciences. 2018;19(3):771. [DOI:10.3390/ijms19030771]
27. Sauvaire Y, Petit P, Broca C, Manteghetti M, Baissac Y, Fernandez-Alvarez J, et al. 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. Diabetes. 1998;47(2):206-10. [DOI:10.2337/diab.47.2.206]
28. Tharaheswari M, Jayachandra Reddy N, Kumar R, Varshney K, Kannan M, Sudha Rani S. Trigonelline and diosgenin attenuate ER stress, oxidative stress-mediated damage in pancreas and enhance adipose tissue PPARγ activity in type 2 diabetic rats. Molecular and cellular biochemistry. 2014;396:161-74. [DOI:10.1007/s11010-014-2152-x]
29. Ganeshpurkar A, Diwedi V, Bhardwaj Y. In vitro α-amylase and α-glucosidase inhibitory potential of Trigonella foenum-graecum leaves extract. AYU (An International Quarterly Journal of Research in Ayurveda). 2013;34(1):109-12. [DOI:10.4103/0974-8520.115446]
30. Hannan J, Ali L, Rokeya B, Khaleque J, Akhter M, Flatt P, et al. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. British Journal of Nutrition. 2007;97(3):514-21. [DOI:10.1017/S0007114507657869]
31. Bruce-Keller AJ, Richard AJ, Fernandez-Kim S-O, Ribnicky DM, Salbaum JM, Newman S, et al. Fenugreek counters the effects of high fat diet on gut microbiota in mice: Links to metabolic benefit. Scientific reports. 2020;10(1):1245. [DOI:10.1038/s41598-020-58005-7]
32. Beiranvand F, Alizadeh M. Plants for remedies of diabetes mellitus in Iran. Plant Biotechnology Persa. 2019;1(1):36-8. [DOI:10.29252/pbp.1.1.36]
33. Ibrahim M, Rehman K, Razzaq A, Hussain I, Farooq T, Hussain A, et al. Investigations of phytochemical constituents and their pharmacological properties isolated from the genus Urtica: critical review and analysis. Critical Reviews™ in Eukaryotic Gene Expression. 2018;28(1). [DOI:10.1615/CritRevEukaryotGeneExpr.2018020389]
34. Bnouham M, Merhfour F-Z, Ziyyat A, Mekhfi H, Aziz M, Legssyer A. Antihyperglycemic activity of the aqueous extract of Urtica dioica. Fitoterapia. 2003;74(7-8):677-81. [DOI:10.1016/S0367-326X(03)00182-5]
35. Kianbakht S, Khalighi-Sigaroodi F, Dabaghian FH. Improved glycemic control in patients with advanced type 2 diabetes mellitus taking Urtica dioica leaf extract: a randomized double-blind placebo-controlled clinical trial. Clin Lab. 2013;59(9-10):1071-6. [DOI:10.7754/Clin.Lab.2012.121019]
36. Khajeh-Mehrizi R, Mozaffari-Khosravi H, Ghadiri-Anari A, Dehghani A. The effect of Urtica dioica extract on glycemic control and insulin resistance indices in patients with type 2 diabetes: a randomized, double-blind clinical trial. Iranian Journal of Diabetes and Obesity. 2014;6(4):149-55.
37. A Tarighat E. [Effect of hydroalcoholic extract of nettle [Urtica Dioica] on glycemic index and insulin resistance index in type 2 diabetic patients]. 2012.
38. Khalili N, Fereydoonzadeh R, Mohtashami R, Mehrzadi S, Heydari M, Huseini HF. Silymarin, olibanum, and nettle, a mixed herbal formulation in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Journal of evidence-based complementary & alternative medicine. 2017;22(4):603-8. [DOI:10.1177/2156587217696929]
39. Salim B, Said G, Kambouche N, Kress S. Identification of phenolic compounds from nettle as new candidate inhibitors of main enzymes responsible on type-II diabetes. Current Drug Discovery Technologies. 2020;17(2):197-202. [DOI:10.2174/1570163815666180829094831]
40. Shahraki MR, Mirshekari H, Sahraki AR, Shafighi E. Effect of urtica dioica decoction on Serum glucose and lipid profile in stereptozotocin induced diabetic male rats. Zahedan Journal of Research in Medical Sciences. 2013;15(11).
41. Bnouham M, Merhfour FZ, Ziyyat A, Aziz M, Legssyer A, Mekhfi H. Antidiabetic effect of some medicinal plants of Oriental Morocco in neonatal non-insulin-dependent diabetes mellitus rats. Human & experimental toxicology. 2010;29(10):865-71. [DOI:10.1177/0960327110362704]
42. Obanda DN, Ribnicky D, Yu Y, Stephens J, Cefalu WT. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A). Scientific reports. 2016;6(1):22222. [DOI:10.1038/srep22222]
43. Farzami B, Ahmadvand D, Vardasbi S, Majin F, Khaghani S. Induction of insulin secretion by a component of Urtica dioica leave extract in perifused Islets of Langerhans and its in vivo effects in normal and streptozotocin diabetic rats. Journal of ethnopharmacology. 2003;89(1):47-53. [DOI:10.1016/S0378-8741(03)00220-4]
44. Ahmadi S, Awliaei H, Haidarizadeh M, Rostamzadeh J. The effect of ethanolic extract of urtica dioica leaves on high levels of blood glucose and gene expression of glucose transporter 2 (Glut2) in liver of alloxan-induced diabetic mice. Gene, cell and tissue. 2015;2(3). [DOI:10.17795/gct-30355]
45. Gohari A, Noorafshan A, Akmali M, Zamani-Garmsiri F, Seghatoleslam A. Urtica dioica distillate regenerates pancreatic beta cells in streptozotocin-induced diabetic rats. Iranian journal of medical sciences. 2018;43(2):174.
46. Jaiswal V, Lee H-J. Antioxidant activity of Urtica dioica: An important property contributing to multiple biological activities. Antioxidants. 2022;11(12):2494. [DOI:10.3390/antiox11122494]
47. Fan S, Raychaudhuri S, Page R, Shahinozzaman M, Obanda DN. Metagenomic insights into the effects of Urtica dioica vegetable on the gut microbiota of C57BL/6J obese mice, particularly the composition of Clostridia. The Journal of nutritional biochemistry. 2021;91:108594. [DOI:10.1016/j.jnutbio.2021.108594]
48. Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F. Nigella sativa L.(black cumin): a promising natural remedy for wide range of illnesses. Evidence‐Based Complementary and Alternative Medicine. 2019;2019(1):1528635. [DOI:10.1155/2019/1528635]
49. Dalli M, Bekkouch O, Azizi S-e, Azghar A, Gseyra N, Kim B. Nigella sativa L. phytochemistry and pharmacological activities: A review (2019-2021). Biomolecules. 2021;12(1):20. [DOI:10.3390/biom12010020]
50. Maideen NMP. Antidiabetic activity of nigella sativa (black seeds) and its active constituent (thymoquinone): A review of human and experimental animal studies. Chonnam Medical Journal. 2021;57(3):169. [DOI:10.4068/cmj.2021.57.3.169]
51. Hosseini M, Mirkarimi S, Amini M, Mohtashami R, Kianbakht S, FALLAH HH. Effects of Nigella sativa L. seed oil in type II diabetic Patients: A randomized, double-blind, placebo-controlled clinical trial. 2013.
52. Najmi A, Nasiruddin M, Khan R, Haque SF. Therapeutic effect of Nigella sativa in patients of poor glycemic control. Asian J Pharm Clin Res. 2012;5(3):224-8.
53. Bamosa AO, Kaatabi H, Lebdaa FM, Elq A-M, Al-Sultanb A. Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian J Physiol Pharmacol. 2010;54(4):344-54.
54. Abdelrazek H, Kilany OE, Muhammad MA, Tag HM, Abdelazim AM. Black seed thymoquinone improved insulin secretion, hepatic glycogen storage, and oxidative stress in streptozotocin-induced diabetic male Wistar rats. Oxidative medicine and cellular longevity. 2018;2018. [DOI:10.1155/2018/8104165]
55. Kanter M, Akpolat M, Aktas C. Protective effects of the volatile oil of Nigella sativa seeds on β-cell damage in streptozotocin-induced diabetic rats: a light and electron microscopic study. Journal of molecular histology. 2009;40:379-85. [DOI:10.1007/s10735-009-9251-0]
56. Tiji S, Bouhrim M, Addi M, Drouet S, Lorenzo JM, Hano C, et al. Linking the phytochemicals and the α-glucosidase and α-amylase enzyme inhibitory effects of Nigella sativa seed extracts. Foods. 2021;10(8):1818. [DOI:10.3390/foods10081818]
57. Hadi V, Kheirouri S, Alizadeh M, Khabbazi A, Hosseini H. Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. Avicenna journal of phytomedicine. 2016;6(1):34.
58. Kanter M, Meral I, Yener Z, Ozbek H, Demir H. Partial regeneration/proliferation of the β-cells in the Islets of Langerhans by Nigella sativa L. in streptozotocin-induced diabetic rats. The Tohoku journal of experimental medicine. 2003;201(4):213-9. [DOI:10.1620/tjem.201.213]
59. Meddah B, Ducroc R, Faouzi MEA, Eto B, Mahraoui L, Benhaddou-Andaloussi A, et al. Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. Journal of ethnopharmacology. 2009;121(3):419-24. [DOI:10.1016/j.jep.2008.10.040]
60. Benhaddou-Andaloussi A, Martineau LC, Spoor D, Vuong T, Leduc C, Joly E, et al. Antidiabetic activity of Nigella sativa. Seed extract in cultured pancreatic β-cells, skeletal muscle cells, and adipocytes. Pharmaceutical biology. 2008;46(1-2):96-104. [DOI:10.1080/13880200701734810]
61. Dong J, Liang Q, Niu Y, Jiang S, Zhou L, Wang J, et al. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. International Journal of Biological Macromolecules. 2020;159:725-38. [DOI:10.1016/j.ijbiomac.2020.05.042]
62. Hussain AI, Rathore HA, Sattar MZ, Chatha SA, Sarker SD, Gilani AH. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. Journal of ethnopharmacology. 2014;155(1):54-66. [DOI:10.1016/j.jep.2014.06.011]
63. Khanum H, Ishtiaq M, Maqbool M, Hussain I, Bhatti KH, Mazhar MW, et al. Evaluating the Conservation Value and Medicinal Potential of Wild Herbaceous Flora in the Sanghar Mountains of District Bhimber, AJK, Pakistan. Ethnobotany Research and Applications. 2024;27:1-41. [DOI:10.32859/era.27.6.1-41]
64. Bernard SA, Olayinka OA. Search for a novel antioxidant, anti-inflammatory/analgesic or anti-proliferative drug: Cucurbitacins hold the ace. Journal of Medicinal Plants Research. 2010;4(25):2821-6.
65. Abdel-Hassan IA, Abdel-Barry JA, Mohammeda ST. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. Journal of ethnopharmacology. 2000;71(1-2):325-30. [DOI:10.1016/S0378-8741(99)00215-9]
66. Huseini HF, Darvishzadeh F, Heshmat R, Jafariazar Z, Raza M, Larijani B. The clinical investigation of Citrullus colocynthis (L.) schrad fruit in treatment of Type II diabetic patients: a randomized, double blind, placebo‐controlled clinical trial. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2009;23(8):1186-9. [DOI:10.1002/ptr.2754]
67. Benariba N, Djaziri R, Hupkens E, Louchami K, Malaisse WJ, Sener A. Insulinotropic action of Citrullus colocynthis seed extracts in rat pancreatic islets. Molecular Medicine Reports. 2013;7(1):233-6. [DOI:10.3892/mmr.2012.1151]
68. Alblooshi M, Devarajan AR, Singh BP, Ramakrishnan P, Mostafa H, Kamal H, et al. Multifunctional bioactive properties of hydrolysates from colocynth (Citrullus colocynthis) seeds derived proteins: Characterization and biological properties. Plant Physiology and Biochemistry. 2023;194:326-34. [DOI:10.1016/j.plaphy.2022.11.026]
69. Fallah Huseini H, Zaree A, Heshmat R, Larijani B, Fakhrzadeh H, Rezaii Sharifabadi R, et al. The effect of Citrullus colocynthis (L.) Schrad. fruit on oxidative stress parameters in type II diabetic patients. Journal of Medicinal Plants. 2006;5(17):55-60.
70. Hussein MA, El-Gizawy HA-E, Gobba NAEK, Mosaad YO. Synthesis of cinnamyl and caffeoyl derivatives of Cucurbitacin-Eglycoside Isolated from Citrullus colocynthis fruits and their structures antioxidant and anti-inflammatory activities relationship. Current Pharmaceutical Biotechnology. 2017;18(8):677-93. [DOI:10.2174/1389201018666171004144615]
71. Fallah Huseini H, Andalib S, Jasemi E, Khalighi-Sigaroodi F, Momtaz S, Mohammadi Savadroodbari R, et al. Protective effect of Citrullus colocynthis (L.) Schard. fruit extract on high glucose-induced neurotoxicity in PC-12 cells. Journal of Medicinal Plants. 2021;20(80):60-8. [DOI:10.52547/jmp.20.80.60]
72. Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, et al. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomedicine & Pharmacotherapy. 2023;165:115202. [DOI:10.1016/j.biopha.2023.115202]
73. Fallah Huseini H, Hemati A, Alavian S. A review of herbal medicine: Silybum marianum. Journal of Medicinal Plants. 2004;3(11):14-24.
74. Zhang X, Liu M, Wang Z, Wang P, Kong L, Wu J, et al. A review of the botany, phytochemistry, pharmacology, synthetic biology and comprehensive utilization of Silybum marianum. Frontiers in Pharmacology. 2024;15:1417655. [DOI:10.3389/fphar.2024.1417655]
75. Xu F, Han C, Li Y, Zheng M, Xi X, Hu C, et al. The chemical constituents and pharmacological actions of silybum marianum. Current Nutrition & Food Science. 2019;15(5):430-40. [DOI:10.2174/1573401314666180327155745]
76. Stolf AM, Cardoso CC, Acco A. Effects of silymarin on diabetes mellitus complications: a review. Phytotherapy research. 2017;31(3):366-74. [DOI:10.1002/ptr.5768]
77. Huseini HF, Larijani B, Heshmat R, Fakhrzadeh H, Radjabipour B, Toliat T, et al. The efficacy of Silybum marianum (L.) Gaertn.(silymarin) in the treatment of type II diabetes: a randomized, double‐blind, placebo‐controlled, clinical trial. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2006;20(12):1036-9. [DOI:10.1002/ptr.1988]
78. Mohammadi S, Afkhami Ardacani M, Salami M, Bolurani S. Effects of silymarin on insulin resistance and blood lipid profile in first-degree relatives of type 2 diabetic patients. Journal of medicinal plants. 2013;12(46):170-6.
79. H Fallah H. < The> effects of silybum marianum [L.] gaertn. seed extract on glycemic control in type II diabetic patient's candidate for insulin therapy visiting endocrinology clinic in baqiyatallah hospital in the years of 2006. 2008.
80. Meng R, Mahadevan J, Oseid E, Vallerie S, Robertson RP. Silymarin activates c-AMP phosphodiesterase and stimulates insulin secretion in a glucose-dependent manner in HIT-T15 cells. Antioxidants. 2016;5(4):47. [DOI:10.3390/antiox5040047]
81. Qin N, Hu X, Li S, Wang J, Li Z, Li D, et al. Hypoglycemic effect of silychristin A from Silybum marianum fruit via protecting pancreatic islet β cells from oxidative damage and inhibiting α-glucosidase activity in vitro and in rats with type 1 diabetes. Journal of functional foods. 2017;38:168-79. [DOI:10.1016/j.jff.2017.09.013]
82. Soto C, Raya L, Juárez J, Pérez J, González I. Effect of Silymarin in Pdx-1 expression and the proliferation of pancreatic β-cells in a pancreatectomy model.
83. Fallah Huseini H, Asghari B, Asgarpanah J, Eghbali Zarch T, Babai Zarch A. Investigation of α-Amylase and α-Glucosidases Inhibitory Effects of Silybum marianum (L. Gaertn) Seed Extracts In Vitro. Journal of Medicinal
84. Gargari BP, Mobasseri M, Valizadeh H, Asghari-Jafarabadi M. Effects of Silybum marianum (L.) Gaertn.(silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: a randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine. 2015;22(2):290- [DOI:10.1016/j.phymed.2014.12.010]
85. Xu F, Yang J, Negishi H, Sun Y, Li D, Zhang X, et al. Silibinin decreases hepatic glucose production through the activation of gut-brain-liver axis in diabetic rats.
86. Xu S, Jiang X, Jia X, Jiang X, Che L, Lin Y, et al. Silymarin modulates microbiota in the gut to improve the health of sow from late gestation to lactation. Animals.
87. Khodaie L, Sadeghpoor O. Ginger from ancient times to the new outlook. Jundishapur journal of natural pharmaceutical products. 2015;10(1):e18402. [DOI:10.17795/jjnpp-18402]
88. Liu Y, Liu J, Zhang Y. Research progress on chemical constituents of Zingiber officinale Roscoe. BioMed research international. 2019;2019(1):5370823. [DOI:10.1155/2019/5370823]
89. Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. Journal of complementary and integrative medicine. 2015;12(2):165-70. [DOI:10.1515/jcim-2014-0021]
90. Nam YH, Hong BN, Rodriguez I, Park MS, Jeong SY, Lee Y-G, et al. Steamed ginger may enhance insulin secretion through KATP channel closure in pancreatic β-cells potentially by increasing 1-dehydro-6-gingerdione content. Nutrients. 2020;12(2):324. [DOI:10.3390/nu12020324]
91. Mozaffari-Khosravi H, Talaei B, Jalali B-A, Najarzadeh A, Mozayan MR. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Complementary therapies in medicine. 2014;22(1):9-16. [DOI:10.1016/j.ctim.2013.12.017]
92. Samad MB, Mohsin MNAB, Razu BA, Hossain MT, Mahzabeen S, Unnoor N, et al. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr db/db type 2 diabetic mice. BMC complementary and alternative medicine. 2017;17:1-13. [DOI:10.1186/s12906-017-1903-0]
93. Venkateswaran M, Jayabal S, Hemaiswarya S, Murugesan S, Enkateswara S, Doble M, et al. Polyphenol‐rich Indian ginger cultivars ameliorate GLUT4 activity in C2C12 cells, inhibit diabetes‐related enzymes and LPS‐induced inflammation: An in vitro study. Journal of Food Biochemistry. 2021;45(2):e13600. [DOI:10.1111/jfbc.13600]
94. Priya Rani M, Padmakumari K, Sankarikutty B, Lijo Cherian O, Nisha V, Raghu K. Inhibitory potential of ginger extracts against enzymes linked to type 2 diabetes, inflammation and induced oxidative stress. International Journal of Food Sciences and Nutrition. 2011;62(2):106-10. [DOI:10.3109/09637486.2010.515565]
95. Al Hroob AM, Abukhalil MH, Alghonmeen RD, Mahmoud AM. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomedicine & Pharmacotherapy. 2018;106:381-9. [DOI:10.1016/j.biopha.2018.06.148]
96. Wang X, Zhang D, Jiang H, Zhang S, Pang X, Gao S, et al. Gut microbiota variation with short-term intake of ginger juice on human health. Frontiers in Microbiology. 2021;11:576061. [DOI:10.3389/fmicb.2020.576061]
97. Wang R, Santos JM, Dufour JM, Stephens ER, Miranda JM, Washburn RL, et al. Ginger root extract improves GI health in diabetic rats by improving intestinal integrity and mitochondrial function. Nutrients. 2022;14(20):4384. [DOI:10.3390/nu14204384]
98. Nojavan F, Danesh A. The Review of attributes of pomegranate in view of Iranian traditional medicine and Modern medicine. Journal of Islamic and Iranian Traditional Medicine. 2017;8(1):35-45.
99. Vučić V, Grabež M, Trchounian A, Arsić A. Composition and potential health benefits of pomegranate: a review. Current pharmaceutical design. 2019;25(16):1817-27. [DOI:10.2174/1381612825666190708183941]
100. Banihani S, Swedan S, Alguraan Z. Pomegranate and type 2 diabetes. Nutrition research. 2013;33(5):341-8. [DOI:10.1016/j.nutres.2013.03.003]
101. 101. Jyothsna D. The Study of Effect of Pomegranate Juice on Type 2 Diabetes Mellietus. IOSR Journal of Dental and Medical Sciences. 2017;16(4):28-30. [DOI:10.9790/0853-1604032830]
102. Fuster-Muñoz E, Roche E, Funes L, Martínez-Peinado P, Sempere J, Vicente-Salar N. Effects of pomegranate juice in circulating parameters, cytokines, and oxidative stress markers in endurance-based athletes: A randomized controlled trial. Nutrition. 2016;32(5):539-45. [DOI:10.1016/j.nut.2015.11.002]
103. Banihani S, Makahleh S, El-Akawi Z, Al-Fashtaki R, Khabour O, Gharibeh M, et al. Fresh pomegranate juice ameliorates insulin resistance, enhances β-cell function, and decreases fasting serum glucose in type 2 diabetic patients. Nutrition research. 2014;34(10):862-7. [DOI:10.1016/j.nutres.2014.08.003]
104. Xu J, Zhao Y, Aisa HA. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264. 7 macrophages. Pharmaceutical Biology. 2017;55(1):2095-101. [DOI:10.1080/13880209.2017.1357737]
105. KÜÇÜKBAY FZ, TEKİN Z. Evaluation of phytochemical contents and antioxidant activity of pomegranate flower. Journal of the Turkish Chemical Society Section A: Chemistry. 2020;7(1):37-42. [DOI:10.18596/jotcsa.628615]
106. Li Y, Wen S, Kota BP, Peng G, Li GQ, Yamahara J, et al. Punica granatum flower extract, a potent α-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. Journal of ethnopharmacology. 2005;99(2):239-44. [DOI:10.1016/j.jep.2005.02.030]
107. Tang D, Liu L, Ajiakber D, Ye J, Xu J, Xin X, et al. Anti-diabetic effect of Punica granatum flower polyphenols extract in type 2 diabetic rats: Activation of Akt/GSK-3β and inhibition of IRE1α-XBP1 pathways. Frontiers in endocrinology. 2018;9:586. [DOI:10.3389/fendo.2018.00586]
108. Li Z, Summanen PH, Komoriya T, Henning SM, Lee R-P, Carlson E, et al. Pomegranate ellagitannins stimulate growth of gut bacteria in vitro: Implications for prebiotic and metabolic effects. Anaerobe. 2015;34:164-8. [DOI:10.1016/j.anaerobe.2015.05.012]
109. Khare R, Upmanyu N, Shukla T, Jain V, Jha M. Compendium of Salvia officinalis: an Overview. Current Traditional Medicine. 2020;6(4):300-11. [DOI:10.2174/2215083805666190723095043]
110. Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. Journal of traditional and complementary medicine. 2017;7(4):433-40. [DOI:10.1016/j.jtcme.2016.12.014]
111. Abdollahi A, Adelibahram F, Ghassab-Abdollahi N, Araj-Khodaei M, Parsian Z, Mirghafourvand M. The effect of Salvia officinalis on blood glycemic indexes and blood lipid profile in diabetic patients: a systematic review and meta-analysis. Journal of Complementary and Integrative Medicine. 2023;20(3):521-9. [DOI:10.1515/jcim-2021-0425]
112. Eidi M, Eidi A, Zamanizadeh H. Effect of Salvia officinalis L. leaves on serum glucose and insulin in healthy and streptozotocin-induced diabetic rats. Journal of ethnopharmacology. 2005;100(3):310-3. [DOI:10.1016/j.jep.2005.03.008]
113. Kianbakht S, Nabati F, Abasi B. Salvia officinalis (Sage) leaf extract as add-on to statin therapy in hypercholesterolemic type 2 diabetic patients: a randomized clinical trial. International journal of molecular and cellular medicine. 2016;5(3):141.
114. Mahdi S, Azzi R, Lahfa FB. Evaluation of in vitro α-amylase and α-glucosidase inhibitory potential and hemolytic effect of phenolic enriched fractions of the aerial part of Salvia officinalis L. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(4):689-94. [DOI:10.1016/j.dsx.2020.05.002]
115. Lima CF, Azevedo MF, Araujo R, Fernandes-Ferreira M, Pereira-Wilson C. Metformin-like effect of Salvia officinalis (common sage): is it useful in diabetes prevention? British journal of nutrition. 2006;96(2):326-33. [DOI:10.1079/BJN20061832]
116. Kolac UK, Ustuner MC, Tekin N, Ustuner D, Colak E, Entok E. The anti-inflammatory and antioxidant effects of Salvia officinalis on lipopolysaccharide-induced inflammation in rats. Journal of medicinal food. 2017;20(12):1193-200. [DOI:10.1089/jmf.2017.0035]
117. Khedher MRB, Hammami M, Arch JR, Hislop DC, Eze D, Wargent ET, et al. Preventive effects of Salvia officinalis leaf extract on insulin resistance and inflammation in a model of high fat diet-induced obesity in mice that responds to rosiglitazone. PeerJ. 2018;6:e4166. [DOI:10.7717/peerj.4166]
118. Hussein EE, El Basuini MF, Ashry AM, Habiba MM, Teiba II, El-Rayes TK, et al. Effect of dietary sage (Salvia officinalis L.) on the growth performance, feed efficacy, blood indices, non-specific immunity, and intestinal microbiota of European sea bass (Dicentrarchus labrax). Aquaculture Reports. 2023;28:101460. [DOI:10.1016/j.aqrep.2022.101460]
119. Nickavar B, Amin G. Anthocyanins from Vaccinium arctostaphylos berries. Pharmaceutical Biology. 2004;42(4-5):289-91. [DOI:10.1080/13880200490511819]
120. Kianbakht S, Abasi B, Dabaghian FH. Anti-hyperglycemic effect of Vaccinium arctostaphylos in type 2 diabetic patients: A randomized controlled trial. Forschende Komplementärmedizin/Research in Complementary Medicine. 2013;20(1):17-22. [DOI:10.1159/000346607]
121. Mohtashami R, Huseini HF, Nabati F, Hajiaghaee R, Kianbakht S. Effects of standardized hydro-alcoholic extract of Vaccinium arctostaphylos leaf on hypertension and biochemical parameters in hypertensive hyperlipidemic type 2 diabetic patients: a randomized, double-blind and placebo-controlled clinical trial. Avicenna journal of phytomedicine. 2019;9(1):44.
122. Mirfeizi M, Mehdizadeh Tourzani Z, Mirfeizi SZ, Asghari Jafarabadi M, Rezvani HR, Afzali M. Controlling type 2 diabetes mellitus with herbal medicines: A triple‐blind randomized clinical trial of efficacy and safety: 使用草药来控制 2 型糖尿病: 一项验证有效性与安全性的三盲随机临床试验. Journal of diabetes. 2016;8(5):647-56. [DOI:10.1111/1753-0407.12342]
123. Saliani N, Kouhsari SM, Izad M. The potential hepatoprotective effect of Vaccinium arctostaphylos L. fruit extract in diabetic rat. Cell Journal (Yakhteh). 2023;25(10):717.
124. Bharti SK, Krishnan S, Kumar A, Kumar A. Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Therapeutic Advances in Endocrinology and metabolism. 2018;9(3):81-100. [DOI:10.1177/2042018818755019]
125. Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4. Nature reviews Molecular cell biology. 2012;13(6):383-96. [DOI:10.1038/nrm3351]
126. Soltani R, Hakimi M, Asgary S, Ghanadian SM, Keshvari M, Sarrafzadegan N. Evaluation of the effects of Vaccinium arctostaphylos L. Fruit extract on serum lipids and hs‐CRP levels and oxidative stress in adult patients with hyperlipidemia: A randomized, double‐blind, placebo‐controlled clinical trial. Evidence‐Based Complementary and Alternative Medicine. 2014;2014(1):217451. [DOI:10.1155/2014/217451]
127. 127. Barut B, Barut EN, Engin S, Arzu Ö, Sezen FS. Investigation of the antioxidant, α-glucosidase inhibitory, anti-inflammatory, and DNA protective properties of Vaccinium arctostaphylos L. Turkish Journal of Pharmaceutical Sciences. 2019;16(2):175. [DOI:10.4274/tjps.galenos.2018.28247]
128. 128. Mukherjee S, Karati D. Exploring the phytochemistry, pharmacognostic properties, and pharmacological activities of medically important plant Momordica charantia. Pharmacological Research-Modern Chinese Medicine. 2023;6:100226. [DOI:10.1016/j.prmcm.2023.100226]
129. 129. Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian pacific journal of tropical disease. 2013;3(2):93-102. [DOI:10.1016/S2222-1808(13)60052-3]
130. 130. Xu X, Shan B, Liao C-H, Xie J-H, Wen P-W, Shi J-Y. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. International journal of biological macromolecules. 2015;81:538-43. [DOI:10.1016/j.ijbiomac.2015.08.049]
131. Cortez-Navarrete M, Martínez-Abundis E, Pérez-Rubio KG, González-Ortiz M, Méndez-del Villar M. Momordica charantia administration improves insulin secretion in type 2 diabetes mellitus. Journal of medicinal food. 2018;21(7):672-7. [DOI:10.1089/jmf.2017.0114]
132. Shih CC, Shlau MT, Lin CH, Wu JB. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high‐fat‐fed mice. Phytotherapy Research. 2014;28(3):363-71. [DOI:10.1002/ptr.5003]
133. Lo H-Y, Ho T-Y, Li C-C, Chen J-C, Liu J-J, Hsiang C-Y. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway. Journal of agricultural and food chemistry. 2014;62(36):8952-61. [DOI:10.1021/jf5002099]
134. Zhang C, Chen H, Bai W. Characterization of Momordica charantia L. polysaccharide and its protective effect on pancreatic cells injury in STZ-induced diabetic mice. International journal of biological macromolecules. 2018;115:45-52. [DOI:10.1016/j.ijbiomac.2018.04.039]
135. Tan H-F, Gan C-Y. Polysaccharide with antioxidant, α-amylase inhibitory and ACE inhibitory activities from Momordica charantia. International journal of biological macromolecules. 2016;85:487-96. [DOI:10.1016/j.ijbiomac.2016.01.023]
136. Chen F, Huang G, Yang Z, Hou Y. Antioxidant activity of Momordica charantia polysaccharide and its derivatives. International journal of biological macromolecules. 2019;138:673-80. [DOI:10.1016/j.ijbiomac.2019.07.129]
137. Wen J-J, Li M-Z, Gao H, Hu J-L, Nie Q-X, Chen H-H, et al. Polysaccharides from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorate metabolic disorders and gut microbiota change in obese rats. Food & Function. 2021;12(6):2617-30. [DOI:10.1039/D0FO02600J]
138. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. International journal of molecular sciences. 2020;21(17):6275. [DOI:10.3390/ijms21176275]
139. Tavakolizadeh M, Peyrovi S, Ghasemi-Moghaddam H, Bahadori A, Mohkami Z, Sotoudeh M, et al. Clinical efficacy and safety of okra (Abelmoschus esculentus (L.) Moench) in type 2 diabetic patients: a randomized, double-blind, placebo-controlled, clinical trial. Acta Diabetologica. 2023;60(12):1685-95. [DOI:10.1007/s00592-023-02149-1]
140. Fallah Huseini H, Yaghoobi M, Fallahi F, Boroumand F, Ezzati MH, Tabatabaei SM, et al. Topical administration of teucrium polium on diabetic foot ulcers accelerates healing: a placebo-controlled randomized clinical study. The International Journal of Lower Extremity Wounds. 2021:15347346211048371. [DOI:10.1177/15347346211048371]
141. Oghbaei H, Fattahi A, Hamidian G, Sadigh-Eteghad S, Ziaee M, Mahmoudi J. A closer look at the role of insulin for the regulation of male reproductive function. General and comparative endocrinology. 2021;300:113643. [DOI:10.1016/j.ygcen.2020.113643]
142. Mahgoub MO, Ali II, Adeghate JO, Tekes K, Kalász H, Adeghate EA. An update on the molecular and cellular basis of pharmacotherapy in type 2 diabetes mellitus. International journal of molecular sciences. 2023;24(11):9328. [DOI:10.3390/ijms24119328]
143. Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α‐amylase and α‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food science & nutrition. 2020;8(12):6320-37. [DOI:10.1002/fsn3.1987]
144. Arabshomali A, Bazzazzadehgan S, Mahdi F, Shariat-Madar Z. Potential benefits of antioxidant phytochemicals in type 2 diabetes. Molecules. 2023;28(20):7209. [DOI:10.3390/molecules28207209]
145. Ceriello A, Testa R. Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes care. 2009;32(Suppl 2):S232. [DOI:10.2337/dc09-S316]
146. Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocrine reviews. 2014;35(6):992-1019. [DOI:10.1210/er.2014-1035]
147. Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of type-2 diabetes. Nutrients. 2021;14(1):166. [DOI:10.3390/nu14010166]
148. 148. Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World journal of gastroenterology: WJG. 2014;20(43):16079. [DOI:10.3748/wjg.v20.i43.16079]
149. Mohanty D, Misra S, Mohapatra S, Sahu PS. Prebiotics and synbiotics: Recent concepts in nutrition. Food bioscience. 2018;26:152-60. [DOI:10.1016/j.fbio.2018.10.008]
150. Lee CB, Chae SU, Jo SJ, Jerng UM, Bae SK. The relationship between the gut microbiome and metformin as a key for treating type 2 diabetes mellitus. International journal of molecular sciences. 2021;22(7):3566. [DOI:10.3390/ijms22073566]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb