1. Dunning N. Leishmania vaccines: from leishmanization to the era of DNA technology. Biosci Horiz. 2009;2(1):73-82. [
DOI:10.1093/biohorizons/hzp004]
2. Melo ARdS, de Macêdo LS, Invenção MdCV, de Moura IA, da Gama MATM, de Melo CML, et al. Third-generation vaccines: Features of nucleic acid vaccines and strategies to improve their efficiency. Genes. 2022;13(12):2287. [
DOI:10.3390/genes13122287]
3. Organization WH [Internet]. Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected tropical diseases: [2015 February 15]. Available from: https://www.who.int/publications/i/item/9789241564861.
4. Elmahallawy EK, Alkhaldi AA, Saleh AA. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed Pharmacother. 2021;139:111671. [
DOI:10.1016/j.biopha.2021.111671]
5. Croft SL, Coombs GH. Leishmaniasis-current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19(11):502-8. [
DOI:10.1016/j.pt.2003.09.008]
6. Hefnawy A, Berg M, Dujardin J-C, De Muylder G. Exploiting knowledge on Leishmania drug resistance to support the quest for new drugs. Trends Parasitol. 2017;33(3):162-74. [
DOI:10.1016/j.pt.2016.11.003]
7. Dantas-Torres F. Leishmune vaccine: the newest tool for prevention and control of canine visceral leishmaniosis and its potential as a transmission-blocking vaccine. Vet Parasitol. 2006;141(1-2):1-8. [
DOI:10.1016/j.vetpar.2006.05.001]
8. Palatnik CB, Borojevic R, Previato JO, Mendonça-Previato L. Inhibition of Leishmania donovani promastigote internalization into murine macrophages by chemically defined parasite glycoconjugate ligands. Infect Immun. 1989;57(3):754-63. [
DOI:10.1128/iai.57.3.754-763.1989]
9. Jardim A, Tolson DL, Turco SJ, Pearson TW, Olafson RW. The Leishmania donovani lipophosphoglycan T lymphocyte-reactive component is a tightly associated protein complex. J Immunol.1991;147(10):3538-44. [
DOI:10.4049/jimmunol.147.10.3538]
10. Abdellahi L, Iraji F, Mahmoudabadi A, Hejazi SH. Vaccination in leishmaniasis: A review article. Iran Biomed J. 2021;26(1):1-35.
11. Ayala A, Llanes A, Lleonart R, Restrepo CM. Advances in Leishmania vaccines: Current development and future prospects. Pathogens. 2024;13(9):812. [
DOI:10.3390/pathogens13090812]
12. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol. 2001;167(9):5226-30. [
DOI:10.4049/jimmunol.167.9.5226]
13. Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, et al. Toward a defined anti-Leishmania vaccine targeting vector antigens: Characterization of a protective salivary protein. J Exp Med. 2001;194(3):331-42. [
DOI:10.1084/jem.194.3.331]
14. Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol. 2001;55(1):453-83. [
DOI:10.1146/annurev.micro.55.1.453]
15. Gholami E, Oliveira F, Taheri T, Seyed N, Gharibzadeh S, Gholami N, et al. DNA plasmid coding for Phlebotomus sergenti salivary protein PsSP9, a member of the SP15 family of proteins, protects against Leishmania tropica. PLoS Negl Trop Dis. 2019;13(1):0007067. [
DOI:10.1371/journal.pntd.0007067]
16. Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11(7):0005600. [
DOI:10.1371/journal.pntd.0005600]
17. Bolhassani A, Gholami E, Zahedifard F, Moradin N, Parsi P, Doustdari F, et al. Leishmania major: Protective capacity of DNA vaccine using amastin fused to HSV-1 VP22 and EGFP in BALB/c mice model. Exp Parasitol. 2011;128(1):9-17. [
DOI:10.1016/j.exppara.2011.01.012]
18. Abdian N, Gholami E, Zahedifard F, Safaee N, Rafati S. Evaluation of DNA/DNA and prime-boost vaccination using LPG3 against Leishmania major infection in susceptible BALB/c mice and its antigenic properties in human leishmaniasis. Exp Parasitol. 2011;127(3):627-36. [
DOI:10.1016/j.exppara.2010.12.007]
19. Doroud D, Zahedifard F, Vatanara A, Najafabadi AR, Taslimi Y, Vahabpour R, et al. Delivery of a cocktail DNA vaccine encoding cysteine proteinases type I, II and III with solid lipid nanoparticles potentiate protective immunity against Leishmania major infection. J Control Release. 2011;153(2):154-62. [
DOI:10.1016/j.jconrel.2011.04.011]
20. Seyed N, Zahedifard F, Habibzadeh S, Yousefi R, Lajevardi MS, Gholami E, et al. Antibiotic-free nanoplasmids as promising alternatives for conventional DNA vectors. Vaccines. 2022;10(10):1710. [
DOI:10.3390/vaccines10101710]
21. Aoki V, Abdeladhim M, Li N, Cecilio P, Prisayanh P, Diaz LA, Valenzuela JG. Some good and some bad: Sand fly salivary proteins in the control of leishmaniasis and in autoimmunity. Front Cell Infect Microbiol. 2022;12:839932. [
DOI:10.3389/fcimb.2022.839932]
22. Sachdev S, Moreira SF, Keehnen Y, Rems L, Kreutzer MT, Boukany PE. DNA-membrane complex formation during electroporation is DNA size-dependent. Biochim Biophys Acta Biomembr. 2020;1862(2):183089. [
DOI:10.1016/j.bbamem.2019.183089]
23. Laurenti MD, da Matta VL, Pernichelli T, Secundino NFC, Pinto LC, Corbett CEP, et al. Effects of salivary gland homogenate from wild‐caught and laboratory‐reared lutzomyia longipalpis on the evolution and immunomodulation of Leishmania (Leishmania) amazonensis infection. Scand J Immunol. 2009;70(4):389-95. [
DOI:10.1111/j.1365-3083.2009.02310.x]
24. Fayaz S, Raz A, Bahrami F, Fard-Esfahani P, Parvizi P, Ajdary S. Molecular identification of Phlebotomus kandelakii apyrase and assessment of the immunogenicity of its recombinant protein in BALB/c mice. Sci Rep. 2023;13(1):8766. [
DOI:10.1038/s41598-023-36037-z]
25. Rogers KA, Titus RG. Immunomodulatory effects of maxadilan and phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. Parasite Immunol. 2003;25(3):127-34. [
DOI:10.1046/j.1365-3024.2003.00623.x]
26. Katebi A, Gholami E, Taheri T, Zahedifard F, Habibzadeh S, Taslimi Y, et al. Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model. Mol Immunol. 2015;67(2):501-11. [
DOI:10.1016/j.molimm.2015.08.001]
27. Lajevardi MS, Gholami E, Taheri T, Sarvnaz H, Habibzadeh S, Seyed N, et al. Leishmania tarentolae as potential live vaccine co-expressing distinct salivary gland proteins against experimental cutaneous leishmaniasis in BALB/c mice model. Front Immunol. 2022;13:895234. [
DOI:10.3389/fimmu.2022.895234]
28. Chowdhury IH, Lokugamage N, Garg NJ. Experimental nanovaccine offers protection against repeat exposures to Trypanosoma cruzi through activation of polyfunctional T cell response. Front Immunol. 2020;11:595039. [
DOI:10.3389/fimmu.2020.595039]
29. Oliveira PH, Mairhofer J. Marker-free plasmids for biotechnological applications-implications and perspectives. Trends Biotechnol. 2013;31(9):539-47. [
DOI:10.1016/j.tibtech.2013.06.001]
30. Williams JA. Vector design for improved DNA vaccine efficacy, safety and production. Vaccines. 2013;1(3):225-49. [
DOI:10.3390/vaccines1030225]
31. Pastor M, Quiviger M, Pailloux J, Scherman D, Marie C. Reduced heterochromatin formation on the pFAR4 miniplasmid allows sustained transgene expression in the mouse liver. Mol Ther Nucleic Acids. 2020;21:28-36. [
DOI:10.1016/j.omtn.2020.05.014]
32. Luke J, Carnes AE, Hodgson CP, Williams JA. Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine. 2009;27(46):6454-9. [
DOI:10.1016/j.vaccine.2009.06.017]