Volume 29, Issue 3 (5-2025)                   IBJ 2025, 29(3): 138-148 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shans N, Esmaeili M, Abraheh K, Asadi Hanjani N, Farrokhi M, Sardarpour N, et al . Development of Experimental Platforms to Assess Helicobacter pylori HopQ Interaction with Host CEACAM Molecules. IBJ 2025; 29 (3) :138-148
URL: http://ibj.pasteur.ac.ir/article-1-5029-en.html
Abstract:  
Background: Helicobacter pylori is an extracellular bacterium responsible for various gastrointestinal diseases, such as peptic ulcers and gastric cancer. It uses multiple mechanisms to colonize the harsh, acidic environment of the stomach and establish its pathogenic processes, mostly through CagA translocation. While cell surface integrin molecules were previously believed to be the main mediators anchoring H. pylori and facilitating this process, recent studies highlight the critical role of the interaction between the bacterial adhesin Helicobacter pylori outer membrane protein Q (HopQ) and host carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in CagA translocation and subsequent pathogenic signaling.
Methods: Recombinant proteins, including HopQ, HopQ-GFP (green fluorescent protein), HopQ-HRP (horseradish peroxidase), and recombinant N-terminal domain of human CEACAM1 (C1ND), were produced via gene cloning, expression, and purification techniques. Ligand-receptor interactions were evaluated using FACS analysis along with antigen- and cell-based ELISA assays.
Results: In this study, we have developed antigen and cell-based platforms using recombinant fusion proteins (HopQ-GFP and HopQ-HRP) that effectively interact with recombinant C1ND, as well as various CEACAM molecules expressed on gastric cell lines (MKN45 and AGS).
Conclusion: These assay platforms enable detailed investigation of the HopQ-CEACAM interaction and supports high-throughput screening of inhibitors, facilitating the identification of potential drugs or vaccine candidates targeting H. pylori infection.

References
1. Hooi JK, Lai WY, Ng WK, Suen MM, Underwood FE, Tanyingoh D, et al., Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology. 2017;153(2):420-9. [DOI:10.1053/j.gastro.2017.04.022]
2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel R, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. [DOI:10.3322/caac.21834]
3. Oleastro M, Ménard A. The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology. 2013;2(3):1110-34. [DOI:10.3390/biology2031110]
4. Sedarat Z, Taylor-Robinson AW. Helicobacter pylori outer membrane proteins and virulence factors: Potential targets for novel therapies and vaccines. Pathogens. 2024;13(5):392. [DOI:10.3390/pathogens13050392]
5. Yamaoka Y, Kita M, Kodama T, Imamura S, Ohno T, Sawai N, et al. Helicobacter pylori infection in mice: Role of outer membrane proteins in colonization and inflammation. Gastroenterology. 2002;123(6):1992-2004. [DOI:10.1053/gast.2002.37074]
6. Matsuo Y, Kido Y, Yamaoka Y. Helicobacter pylori outer membrane protein-related pathogenesis. Toxins. 2017;9(3):101. [DOI:10.3390/toxins9030101]
7. Exner MM, Doig P, Trust TJ, Hancock RE. Isolation and characterization of a family of porin proteins from Helicobacter pylori. Infect Immun. 1995;63(4):1567-72. [DOI:10.1128/iai.63.4.1567-1572.1995]
8. Javaheri A, Kruse T, Moonens K, Mejias-Luque R, Debraekeleer A, Asche CI, et al. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat Microbiol. 2016;2:16189. [DOI:10.1038/nmicrobiol.2016.189]
9. Xue J, Bai Y, Chen Y, Wang JD, Zhang Z-S, Zhang YL, et al. Expression of Helicobacter pylori AlpA protein and its immunogenicity. World J Gastroenterol. 2005;11(15):2260-3. [DOI:10.3748/wjg.v11.i15.2260]
10. Saberi S, Schmidt A, Eybpoosh S, Esmaili M, Talebkhan Y, Mohajerani N, et al. Helicobacter pylori strains from duodenal ulcer patients exhibit mixed babA/B genotypes with low levels of BabA adhesin and Lewis b binding. Dig Dis Sci. 2016;61(10):2868-77. [DOI:10.1007/s10620-016-4217-z]
11. Backert S, Tegtmeyer N. Type IV secretion and signal transduction of Helicobacter pylori CagA through interactions with host cell receptors. Toxins. 2017;9(4):115. [DOI:10.3390/toxins9040115]
12. Bonsor DA, Zhao Q, Schmidinger B, Weiss E, Wang J, Deredge D, et al. The Helicobacter pylori adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein CagA. EMBO J. 2018;37(13):98664. [DOI:10.15252/embj.201798664]
13. Cover TL, Lacy DB, Ohi MD. The Helicobacter pylori cag type IV secretion system. Trends Microbiol. 2020;28(8):682-95. [DOI:10.1016/j.tim.2020.02.004]
14. Saberi S, Shans N, Ghaffari S, Esmaili M, Mohammadi M. The role of CEACAMs versus integrins in Helicobacter pylori CagA translocation: a systematic review. Microbes Infect. 2024;26(1-2):105246. [DOI:10.1016/j.micinf.2023.105246]
15. Königer V, Holsten L, Harrison U, Busch B, Loell E, Zhao Q, et al. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat Microbiol. 2016;2:16188. [DOI:10.1038/nmicrobiol.2016.188]
16. Backert S, Tegtmeyer N, Fischer W. Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future microbiol. 2015;10(6):955-65. [DOI:10.2217/fmb.15.32]
17. Ford AC, Yuan Y, Moayyedi P. Helicobacter pylori eradication therapy to prevent gastric cancer: Systematic review and meta-analysis. Gut. 2020;69(12):2113-21. [DOI:10.1136/gutjnl-2020-320839]
18. Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E. Prevalence of antibiotic resistance in Helicobacter pylori: A systematic review and meta-analysis in World Health Organization regions. Gastroenterology. 2018;155(5):1372-82. [DOI:10.1053/j.gastro.2018.07.007]
19. Møller H, Heseltine E, Vainio H. Working group report on schistosomes, liver flukes and Helicobacter pylori. Int J Cancer. 1995;60(5):587-9. [DOI:10.1002/ijc.2910600502]
20. Salahi-Niri A, Nabavi-Rad A, Monaghan TM, Rokkas T, Doulberis M, Sadeghi A, et al. Global prevalence of Helicobacter pylori antibiotic resistance among children in the world health organization regions between 2000 and 2023: A systematic review and meta-analysis. BMC Med. 2024;22(1):598. [DOI:10.1186/s12916-024-03816-y]
21. Luzko I, Nyssen O, Moreira L, Gisbert J. Safety profile of Helicobacter pylori eradication treatments: Literature review and updated data of the European Registry on Helicobacter pylori management (Hp-EuReg). Expert Opin Drug Saf. 2024;23(5):553-64. [DOI:10.1080/14740338.2024.2338245]
22. Tshibangu-Kabamba E, Yamaoka Y. Helicobacter pylori infection and antibiotic resistance-from biology to clinical implications. Nat Rev Gastroenterol Hepatol. 2021;18(9):613-29. [DOI:10.1038/s41575-021-00449-x]
23. Mohammadi M, Saberi Kashani S, Talebkhan Garoosi Y, Jahangiri Tazehkand S. In vivo measurement of Helicobacter pylori infection. Methods Mol Biol. 2012;921:239-56. [DOI:10.1007/978-1-62703-005-2_26]
24. Plummer M, Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob Health. 2016;4(9):609-16. [DOI:10.1016/S2214-109X(16)30143-7]
25. Boyanova L, Hadzhiyski P, Gergova R, Markovska R. Evolution of Helicobacter pylori resistance to antibiotics: A topic of increasing concern. Antibiotics. 2023;12(2):332. [DOI:10.3390/antibiotics12020332]
26. Hanafiah A, Aziz SN, Nesran ZN, Wazen XC, Ahmad MF. Molecular investigation of antimicrobial peptides against Helicobacter pylori proteins using a peptide-protein docking approach. Heliyon. 2024;10(6):28128. [DOI:10.1016/j.heliyon.2024.e28128]
27. Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant natural products targeting bacterial virulence factors. Chem Rev. 2016;116(16):9162-236. [DOI:10.1021/acs.chemrev.6b00184]
28. Bendary M.M, Elmanakhly AR, Mosallam FM, Alblwi NA, Mosbah RA, Alshareef WA, et al. Boosting the anti‐Helicobacter efficacy of Azithromycin through natural compounds: Insights from in vitro, in vivo, histopathological, and molecular docking investigations. Helicobacter. 2024;29(4):13110. [DOI:10.1111/hel.13110]
29. Hollandsworth HM, Schmitt V, Amirfakhri S, Filemoni F, Schmidt A, Landstrom M, et al. Fluorophore-conjugated Helicobacter pylori recombinant membrane protein (HopQ) labels primary colon cancer and metastases in orthotopic mouse models by binding CEA-related cell adhesion molecules. Transl Oncol. 2020;13(12):100857. [DOI:10.1016/j.tranon.2020.100857]
30. Song L, Song M, Rabkin CS, Chung Y, Williams S, Torres J, et al. Identification of anti-Helicobacter pylori antibody signatures in gastric intestinal metaplasia. J Gastroenterol. 2023;58(2):112-24. [DOI:10.1007/s00535-022-01933-0]
31. Jaradat H, Hryniewicz BM, Pasti IA, Valerio TL, Al-Hamry A, Marchesi LF, et al. Detection of H. pylori outer membrane protein (HopQ) biomarker using electrochemical impedimetric immunosensor with polypyrrole nanotubes and carbon nanotubes nanocomposite on screen-printed carbon electrode. Biosens Bioelectron. 2024;249:115937. [DOI:10.1016/j.bios.2023.115937]
32. Tegtmeyer N, Harrer A, Schmitt V, Singer BB, Backert S. Expression of CEACAM1 or CEACAM5 in AZ‐521 cells restores the type IV secretion deficiency for translocation of CagA by Helicobacter pylori. Cell Microbiol. 2019;21(1):12965. [DOI:10.1111/cmi.12965]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb