1. Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev Dis Primers 2021;7(1):52. [
DOI:10.1038/s41572-021-00284-z]
2. Hertzberg D, Rydén L, Pickering JW, Sartipy U, Holzmann MJ. Acute kidney injury-an overview of diagnostic methods and clinical management. Clin Kidney J. 2017;10(3):323-31. [
DOI:10.1093/ckj/sfx003]
3. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607-25. [
DOI:10.1038/s41581-018-0052-0]
4. Mohammadi M, Najafi H, Mohamadi Yarijani Z, Vaezi G, Hojati V. Piperine pretreatment attenuates renal ischemia-reperfusion induced liver injury. Heliyon.2019;5(8):e02180. [
DOI:10.1016/j.heliyon.2019.e02180]
5. Najafi H, Mohamadi Yarijani Z, Changizi-Ashtiyani S, Mansouri K, Modarresi M, Madani SH, et al. Protective effect of Malva sylvestris L. extract in ischemia-reperfusion induced acute kidney and remote liver injury. Plos One. 2017;12(11):e0188270. [
DOI:10.1371/journal.pone.0188270]
6. Adiyeke E, Ren Y, Guan Z, Ruppert MM, Rashidi P, Bihorac A, et al. Clinical courses of acute kidney injury in hospitalized patients: A multistate analysis. Sci Rep. 2023;13(1):17781. [
DOI:10.1038/s41598-023-45006-5]
7. Makris K, Spanou L. Acute kidney injury: Definition, pathophysiology and clinical phenotypes. Clin Biochem Rev. 2016;37(2):85-98.
8. Farrar A. Acute kidney injury. Nurs Clin North Am. 2018;53(4):499-510. [
DOI:10.1016/j.cnur.2018.07.001]
9. Turgut F, Awad AS, Abdel-Rahman EM. Acute kidney injury: Medical causes and pathogenesis. J Clin Med. 2023;12(1):375. [
DOI:10.3390/jcm12010375]
10. Hanif MO, Bali A, Ramphul K. Acute renal tubular necrosis. StatPearls. 2023.
11. OErdbruegger U, Okusa MD. Etiology and diagnosis of prerenal disease and acute tubular necrosis in acute kidney injury in adults. 2019.
12. Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2(2):1303-53. [
DOI:10.1002/j.2040-4603.2012.tb00431.x]
13. Mohammadi M, Najafi H, Yarijani ZM, Vaezi G, Hojati V. Protective effect of piperine in ischemia-reperfusion induced acute kidney injury through inhibition of inflammation and oxidative stress. J Tradit Complement Med. 2019;10(6):570-76. [
DOI:10.1016/j.jtcme.2019.07.002]
14. Yuan Y. Mechanisms inspired targeting peptides. Adv Exp Med Biol. 2020;1248:531-46. [
DOI:10.1007/978-981-15-3266-5_21]
15. Sánchez A, Vázquez A. Bioactive peptides: A review. Food Qual Saf. 2017;1(1):29-46. [
DOI:10.1093/fqs/fyx006]
16. Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, et al. Therapeutic peptides: Current applications and future directions. Sig Transduct Target Ther. 2022;7(1):48. [
DOI:10.1038/s41392-022-00904-4]
17. Wu D, Wang J, Wang H, Ji A, Li Y. Protective roles of bioactive peptides during ischemia-reperfusion injury: From bench to bedside. Life Sci. 2017;180:83-92. [
DOI:10.1016/j.lfs.2017.05.014]
18. Du Z, Li Y. Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. J Agric Res. 2022;(9):100353. [
DOI:10.1016/j.jafr.2022.100353]
19. Rossino G, Marchese E, Galli G, Verde F, Finizio M, Serra M, et al. Peptides as therapeutic agents: Challenges and opportunities in the green transition era. Molecules. 2023;28(20):7165. [
DOI:10.3390/molecules28207165]
20. Chai TT, Law YC, Wong FC, Kim SK. Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: A review. Mar Drugs.2017;15(2):42. [
DOI:10.3390/md15020042]
21. Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, et al. A global review on short peptides: Frontiers and perspectives. Molecules. 2021;26(2):430. [
DOI:10.3390/molecules26020430]
22. Chandrudu S, Simerska P, Toth I. Chemical methods for peptide and protein production. Molecules. 2013;18(4): 4373-88. [
DOI:10.3390/molecules18044373]
23. Lee ACL, Harris JL, Khanna KK, Hong JH. A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci. 2019;20(10):2383. [
DOI:10.3390/ijms20102383]
24. Zamyatnin AA. Structural-functional diversity of the natural oligopeptides. Prog Biophys Mol Biol. 2018;133:1-8. [
DOI:10.1016/j.pbiomolbio.2017.09.024]
25. Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700-07. [
DOI:10.1016/j.bmc.2017.06.052]
26. Hayes M. Bioactive peptides in preventative healthcare: An overview of bioactivities and suggested methods to assess potential applications. Curr Pharm Des. 2021;27(11):1332-41. [
DOI:10.2174/1381612827666210125155048]
27. López-Pedrouso M, Zaky AA, Lorenzo JM, Camiña M, Franco D. A review on bioactive peptides derived from meat and by-products: Extraction methods, biological activities, applications and limitations. Meat Sci. 2023;204:109278. [
DOI:10.1016/j.meatsci.2023.109278]
28. Meisel H, Bockelmann W. Bioactive peptides encrypted in milk proteins: Proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek. 1999;76(1-4):207-15. [
DOI:10.1023/A:1002063805780]
29. Bidram M, Ganjalikhany MR. Bioactive peptides from food science to pharmaceutical industries: Their mechanism of action, potential role in cancer treatment and available resources. Heliyon. 2024;10(23):e40563. [
DOI:10.1016/j.heliyon.2024.e40563]
30. Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int J Mol Sci. 2022;23(3):1445. [
DOI:10.3390/ijms23031445]
31. Wang J, Wu Y, Chen Z, Chen Y, Lin Q, Liang Y. Exogenous bioactive peptides have a potential therapeutic role in delaying aging in rodent models. Int J Mol Sci. 2022;23(3):1421. [
DOI:10.3390/ijms23031421]
32. Fosgerau K, Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov Today. 2024;20(1):122-8. [
DOI:10.1016/j.drudis.2014.10.003]
33. Li Q, Chao W, Qiu L. Therapeutic peptides: Chemical strategies fortify peptides for enhanced disease treatment efficacy. Amino Acids. 2025;57(1):25. [
DOI:10.1007/s00726-025-03454-5]
34. Morimoto BH. Therapeutic peptides for CNS indications: Progress and challenges. Bioorg Med Chem. 2018;26(10):2859-62. [
DOI:10.1016/j.bmc.2017.09.011]
35. Mizuno S, Matsuura K, Gotou T, Nishimura S, Kajimoto O, Yabune M, et al. Antihypertensive effect of casein hydrolysate in a placebo-controlled study in subjects with high-normal blood pressure and mild hypertension. Br J Nutr. 2005;94(1):84-91. [
DOI:10.1079/BJN20051422]
36. Shamloo M, Eck P, Beta T. Angiotensin converting enzyme inhibitory peptides derived from cereals. J Hum Nutr Food Sci. 2015;3:1057-67.
37. Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf. 2021;20(2):1150-87. [
DOI:10.1111/1541-4337.12711]
38. Moslemi F, Taheri P, Azimipoor M, Ramtin S, Hashemianfar M, Momeni-Ashjerdi A, et al. Effect of angiotensin II type 1 receptor blockade on kidney ischemia/reperfusion; A gender-related difference. J Renal Inj Prev. 2016;5(3):140-3. [
DOI:10.15171/jrip.2016.29]
39. Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed Res Int. 2014:2014:608979. [
DOI:10.1155/2014/608979]
40. Hidayat M, Prahastuti S, Riany D, Soemardji A, Suliska N, Garmana A, et al. Kidney therapeutic potential of peptides derived from the bromelain hydrolysis of green peas protein. Iran J Basic Med Sci. 2019;22(9):1016-25.
41. Guan YM, Diao ZL, Huang HD, Zheng JF, Zhang QD, Wang LD, et al. Bioactive peptide apelin rescues acute kidney injury by protecting the function of renal tubular mitochondria. Amino Acids. 2021;53(8):1229-40. [
DOI:10.1007/s00726-021-03028-1]
42. Randjelovic P, Veljkovic S, Stojiljkovic N, Sokolovic D, Ilic I. Gentamicin nephrotoxicity in animals: Current knowledge and future perspectives. Excil J. 2017;(16):388-99.
43. Kim HS. Renal toxicology. Interdisciplinary Toxicology. 2020:163-78. [
DOI:10.1016/B978-0-12-813602-7.00013-2]
44. Asejeje FO, Ighodaro OM, Asejeje GI, Adeosun AM. Protective role of apple cider vinegar (APCV) in CCl4-induced renal damage in wistar rats. Metabol Open. 2020;8:100063. [
DOI:10.1016/j.metop.2020.100063]
45. Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int. 2011;79(1):33-45. [
DOI:10.1038/ki.2010.337]
46. Huang H, Jin WW, Huang M, Ji H, Capen DE, Xia Y, Yuan J, et al. Gentamicin-induced acute kidney injury in an animal model involves programmed necrosis of the collecting duct. J Am Soc Nephrol. 2020;31(9):2097-2115. [
DOI:10.1681/ASN.2019020204]
47. Li J, Li QX, Xie XF, Ao Y, Tie CR, Song RJ. Differential roles of dihydropyridine calcium antagonist nifedipine, nitrendipine and amlodipine on gentamicin-induced renal tubular toxicity in rats. Eur J Pharmacol. 2009;620 [
DOI:10.1016/j.ejphar.2009.08.021]
48. Baylis C. The mechanism of the decline in glomerular filtration rate in gentamicin-induced acute renal failure in the rat. J Antimicrob Chemother. 1980;6(3):381-8. [
DOI:10.1093/jac/6.3.381]
49. Martinez-Salgado C, López-Hernández FJ, López-Novoa JM. Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol. 2007;223(1):86-98. [
DOI:10.1016/j.taap.2007.05.004]
50. Anter A, Awad EM, Kamel AA, Matuok AI. Dihydromyricetin alleviates gentamicin induced vascular dysfunction through inhibition of ROS/NF-κB activation. J Adv Biomedical Pharm Sci. 2023;6(2):107-13. [
DOI:10.21608/jabps.2023.194992.1181]
51. Yarijani ZM, Najafi H, Shackebaei D, Madani SH, Modarresi M, Jassemi SV. Amelioration of renal and hepatic function, oxidative stress, inflammation and histopathologic damages by Malva sylvestris extract in gentamicin induced renal toxicity. Biomed Pharmacother. 2019;112:108635. [
DOI:10.1016/j.biopha.2019.108635]
52. Omidian N, Yarijani ZM, Modarresi M, Godini A, Najafi H. Anti-inflammatory and antioxidative properties of date pollen in the gentamicin-induced renal toxicity. Physiol Pharmacol. 2022;26(2):145-57.
53. Balaha MF, Alamer AA, Eisa AA, Aljohani HM. Shikonin alleviates gentamicin-induced renal injury in rats by targeting renal endocytosis, SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt Cascades. Antibiotics. 2023;12(5):826. [
DOI:10.3390/antibiotics12050826]
54. Edeogu CO, Kalu ME, Famurewa AC, Asogwa NT, Onyeji GN, Ikpemo KO. Nephroprotective effect of Moringa oleifera seed oil on gentamicin-induced nephrotoxicity in rats: Biochemical evaluation of antioxidant, anti-inflammatory, and antiapoptotic pathways. J Am Coll Nutr. 2020;39(4):307-15. [
DOI:10.1080/07315724.2019.1649218]
55. Motwani SS, Kaur SS, Kitchlu A. Cisplatin nephrotoxicity: Novel insights into mechanisms and preventative strategies. Semin Nephrol. 2022;42(6):151341. [
DOI:10.1016/j.semnephrol.2023.151341]
56. Abouzeinab NS. Antioxidant effect of silymarin on cisplatin-induced renal oxidative stress in rats. J Pharmacol Toxicol. 2015;10(1):1-19. [
DOI:10.3923/jpt.2015.1.19]
57. Mohamadi Yarijani Z, Godini A, Madani SH, Najafi H. Reduction of cisplatin-induced renal and hepatic side effects in rat through antioxidative and anti-inflammatory properties of Malva sylvestris L. extract. Biomed Pharmacother. 2018;106:1767-74. [
DOI:10.1016/j.biopha.2018.07.115]
58. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010;2(11):2490-518. [
DOI:10.3390/toxins2112490]
59. Fang CY, Lou DY, Zhou LQ, Wang JC, Yang B, He QJ, et al. Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin. 2021;42(12):1951-69. [
DOI:10.1038/s41401-021-00620-9]
60. Ateşşahín A, Çeríbaşi AO, Yuce A, Bulmus Ö, Çikim G. Role of ellagic acid against cisplatin‐induced nephrotoxicity and oxidative stress in rats. Basic Clin Pharmacol Toxicol. 2007;100(2):121-6. [
DOI:10.1111/j.1742-7843.2006.00015.x]
61. Lee HS, Kim BK, Nam Y, Sohn UD, Park ES, Hong SA, et al. Protective role of phosphatidylcholine against cisplatin-induced renal toxicity and oxidative stress in rats. Food Chem Toxicol. 2013;58:388-93. [
DOI:10.1016/j.fct.2013.05.005]
62. Abdel-Rahman Mohamed A, Khater SI, Metwally MMM, Bin Emran T, Nassan MA, Abd El-Emam MM, et al. TGF-β1, NAG-1, and antioxidant enzymes expression alterations in cisplatin-induced nephrotoxicity in a rat model: Comparative modulating role of Melatonin Vit. E and Ozone. Gene. 2022;820:146293. [
DOI:10.1016/j.gene.2022.146293]
63. Domingo IK, Latif A, Bhavsar AP. Pro-inflammatory signaling PRRopels cisplatin-induced toxicity. Int J Mol Sci. 2022;23(13):7227. [
DOI:10.3390/ijms23137227]
64. Zamorskii I, Shchudrova TS, Lin'kova NS, Nichik TE, Khavinson VK. Nephroprotective effect of EDL peptide at acute injury of kidneys of different genesis. Bull Exp Biol Med. 2017;163(3):389-93. [
DOI:10.1007/s10517-017-3811-1]
65. Nojiri T, Hosoda H, Kimura T, Miura K, Ishikane S, Tokudome T, et al. Atrial natriuretic peptide protects against cisplatin-induced acute kidney injury. Cancer Chemother Pharmacol. 2015;75(1):123-9. [
DOI:10.1007/s00280-014-2624-4]
66. Hao Y, Miao J, Liu W, Peng L, Chen Y, Zhong Q. Formononetin protects against cisplatin‑induced acute kidney injury through activation of the PPARα/Nrf2/HO‑1/NQO1 pathway. Int J Mol Med. 2021;47(2):511-22. [
DOI:10.3892/ijmm.2020.4805]
67. Sadhukhan P, Saha S, Dutta S, Sil PC. Mangiferin ameliorates cisplatin induced acute kidney injury by upregulating Nrf-2 via the activation of PI3K and exhibits synergistic anticancer activity with cisplatin. Front Pharmacol. 2018;9:638. [
DOI:10.3389/fphar.2018.00638]
68. Helal MG, Zaki MMAF, Said E. Nephroprotective effect of saxagliptin against gentamicin-induced nephrotoxicity, emphasis on anti-oxidant, anti-inflammatory and anti-apoptic effects. Life Sci. 2018;208:64-71. [
DOI:10.1016/j.lfs.2018.07.021]
69. Lu QB, Du Q, Wang HP, Tang ZH, Wang YB, Sun HJ. Salusin-β mediates tubular cell apoptosis in acute kidney injury: Involvement of the PKC/ROS signaling pathway. Redox Biol. 2020;30:101411. [
DOI:10.1016/j.redox.2019.101411]
70. Shi M, Maique J, Shepard S, Li P, Seli O, Moe OW, et al. In vivo evidence for therapeutic applications of beclin 1 to promote recovery and inhibit fibrosis after acute kidney injury. Kidney Int. 2022;101(1):63-78. [
DOI:10.1016/j.kint.2021.09.030]
71. Shchudrova T, Zamorskii I, Kopchuk T, Drachuk V, Korotun O, Dykal M, et al. Renoprotective efficacy of pineal peptide and melatonin in drug-induced kidney injury. PharmacologyOnline. 2019;3:236-43.
72. Yang SK, Han YC, He JR, Yang M, Zhang W, Zhan M, et al. Mitochondria targeted peptide SS-31 prevent on cisplatin-induced acute kidney injury via regulating mitochondrial ROS-NLRP3 pathway. Biomed Pharmacother. 2020;130:110521. [
DOI:10.1016/j.biopha.2020.110521]
73. Nagai J, Saito M, Adachi Y, Yumoto R, Takano M. Inhibition of gentamicin binding to rat renal brush-border membrane by megalin ligands and basic peptides. J Control Release. 2006;112(1):43-50. [
DOI:10.1016/j.jconrel.2006.01.003]
74. Mahmoudzadeh L, Najafi H, Ashtiyani SC, Yarijani ZM. Anti‐inflammatory and protective effects of saffron extract in ischemia/reperfusion‐induced acute kidney injur. Nephrology. 2017;22(10):748-54. [
DOI:10.1111/nep.12849]
75. Vazquez G, Sfakianos M, Coppa G, Jacob A, Wang P. Novel PS-OME miRNA 130b-3p reduces inflammation and injury and improves survival after renal ischemia-reperfusion injury. Shock. 2023;60(4):613-20. [
DOI:10.1097/SHK.0000000000002211]
76. Clarkson MJ, Friedewald JJ, Eustace JA, Rabb H. Acute kidney injury. Brenner and Rector's The Kidney. 2007;(29):943-87.
77. Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med. 1996;334(22):1448-60. [
DOI:10.1056/NEJM199605303342207]
78. Kribben A, Edelstein CL, Schrier RW. Pathophysiology of acute renal failure. J Nephrol. 1999;12(2):142-51.
79. Nørgård MÖ, Svenningsen P. Acute kidney injury by ischemia/reperfusion and extracellular vesicles. Int J Mol Sci. 2023;24(20):15312. [
DOI:10.3390/ijms242015312]
80. Hu X, Xu Y, Zhang Z, Tang Z, Zhang J, Luo Y, et al. TSC1 affects the process of renal ischemia-reperfusion injury by controlling macrophage polarization. Front immunol. 2021;12:637335. [
DOI:10.3389/fimmu.2021.637335]
81. Fan H, Liu J, Sun J, Feng G, Li J. Advances in the study of B cells in renal ischemia-reperfusion injury. Front immunol. 2023;14:1216094. [
DOI:10.3389/fimmu.2023.1216094]
82. Li C, Yu Y, Zhu S, Hu Y, Ling X, Xu L, et al. The emerging role of regulated cell death in ischemia and reperfusion-induced acute kidney injury: Current evidence and future perspectives. Cell Death Discov. 2024;10(1):216. [
DOI:10.1038/s41420-024-01979-4]
83. Liu Q, Liang X, Liang M, Qin R, Qin F, Wang X. Ellagic acid ameliorates renal ischemic-reperfusion injury through NOX4/JAK/STAT signaling pathway. J Inflammation. 2020;43(1):298-309. [
DOI:10.1007/s10753-019-01120-z]
84. Abousaad S, Ahmed F, Abouzeid A, Ongeri EM. Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury. Physiol Rep. 2022;10(18):15468. [
DOI:10.14814/phy2.15468]
85. Kapisiz A, Kaya C, Eryilmaz S, Karabulut R, Turkyilmaz Z, Inan MA, et al. Protective effects of lupeol in rats with renal ischemia‑reperfusion injury. Exp Ther Med. 2024;28(2):313. [
DOI:10.3892/etm.2024.12602]
86. Abdel-Razek HA, Rizk MS, Amer GS, Kora MA, Afifi AM, Donia SS. Impact of combined ischemic preconditioning and melatonin on renal ischemia-reperfusion injury in rats. Iran J Basic Med Sci. 2023; 26(2): 235-40.
87. Hadj Abdallah N, Baulies A, Bouhlel A, Bejaoui M, Zaouali MA, Ben Mimouna S, et al. Zinc mitigates renal ischemia‐reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy. J Cell Physiol. 2018;233(11):8677-90. [
DOI:10.1002/jcp.26747]
88. Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng F-Y, et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Nephrol. 2011;22(6):1041-52. [
DOI:10.1681/ASN.2010080808]
89. Wu Y, Huang L, Sai W, Chen F, Liu Y, Han C, et al. HBSP improves kidney ischemia-reperfusion injury and promotes repair in properdin deficient mice via enhancing phagocytosis of tubular epithelial cells. Front Immunol. 2023;14:1183768. [
DOI:10.3389/fimmu.2023.1183768]
90. Patel NS, Kerr-Peterson HL, Brines M, Collino M, Rogazzo M, Fantozzi R, et al. Delayed administration of pyroglutamate helix B surface peptide (pHBSP), a novel non-erythropoietic analog of erythropoietin, attenuates acute kidney injury. Mol Med. 2012;18(1):719-27. [
DOI:10.2119/molmed.2012.00093]
91. Bircan B, Çakır M, Kırbağ S, Gül HF. Effect of apelin hormone on renal ischemia/reperfusion induced oxidative damage in rats. Ren fail. 2016;38(7):1122-8. [
DOI:10.1080/0886022X.2016.1184957]
92. Cakir M, Duzova H, Taslidere A, Orhan G, Ozyalin F. Protective effects of salusin-α and salusin-β on renal ischemia/reperfusion damage and their levels in ischemic acute renal failure. Biotech Histochem. 2017;92(2):122-33. [
DOI:10.1080/10520295.2017.1283056]
93. Shah KG, Rajan D, Jacob A, Wu R, Krishnasastry K, Nicastro J, et al. Attenuation of renal ischemia and reperfusion injury by human adrenomedullin and its binding protein. J Surg Res. 2010;163(1):110-17. [
DOI:10.1016/j.jss.2010.03.064]
94. Doi A, Kitada H, Ota M, Kawanami S, Kurihara K, Miura Y, et al. Effect of cell permeable peptide of c-Jun NH2-terminal kinase inhibitor on the attenuation of renal ischemia-reperfusion injury in Pigs. Transplant Proc. 2013;45(6):2469-75. [
DOI:10.1016/j.transproceed.2013.02.134]
95. Patel NS, Collin M, Thiemermann C. Urocortin does not reduce the renal injury and dysfunction caused by experimental ischemia/reperfusion. Eur J Pharmacol. 2004;496(1-3):175-80. [
DOI:10.1016/j.ejphar.2004.06.008]
96. Yang C, Zhao T, Lin M, Zhao Z, Hu L, Jia Y, et al. Helix B surface peptide administered after insult of ischemia reperfusion improved renal function, structure and apoptosis through beta common receptor/erythropoietin receptor and PI3K/Akt pathway in a murine model. Exp Biol Med. 2013;238(1):111-9. [
DOI:10.1258/ebm.2012.012185]
97. Krishnamoorthy A, Ajay AK, Hoffmann D, Kim T-M, Ramirez V, Campanholle G, et al. Fibrinogen β-derived Bβ(15-42) peptide protects against kidney ischemia/reperfusion injury. Blood. 2011;118(7):1934-42. [
DOI:10.1182/blood-2011-02-338061]
98. Pan LL, Liang W, Ren Z, Li C, Chen Y, Niu W, et al. Cathelicidin-related antimicrobial peptide protects against ischemia reperfusion-induced acute kidney injury in mice. Br J Pharmacol. 2020;177(12):2726-42. [
DOI:10.1111/bph.14998]
99. Jin X, Zhang Y, Li X, Zhang J, Xu D. C-type natriuretic peptide ameliorates ischemia/reperfusion-induced acute kidney injury by inhibiting apoptosis and oxidative stress in rats. Life Sci. 2014;117(1):40-5. [
DOI:10.1016/j.lfs.2014.09.023]
100. Noiri E, Gailit J, Sheth D, Magazine H, Gurrath M, Muller G, et al. Cyclic RGD peptides ameliorate ischemic acute renal failure in rats. Kidney Int. 1994;46(4):1050-8. [
DOI:10.1038/ki.1994.366]
101. Yoshida T, Kumagai H, Kohsaka T, Ikegaya N. Relaxin protects against renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2013;305(8):1169-76. [
DOI:10.1152/ajprenal.00654.2012]
102. Zhong D, Wang H, Liu M, Li X, Huang M, Zhou H, et al. Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress. Sci Rep. 2015;5:16910. [
DOI:10.1038/srep16910]
103. Facio FN, Sena AA, Araújo LP, Mendes GE, Castro I, Luz MA, et al. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. J Mol Med.2011;89:51-63. [
DOI:10.1007/s00109-010-0684-4]
104. Yang C, Cao Y, Zhang Y, Li L, Xu M, Long Y, et al. Cyclic helix B peptide inhibits ischemia reperfusion-induced renal fibrosis via the PI3K/Akt/FoxO3a pathway. J Transl Med. 2015;13:355. [
DOI:10.1186/s12967-015-0699-2]
105. Yang C, Xu Z, Zhao Z, Li L, Zhao T, Peng D, et al. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim Biophys Acta Mol Basis Dis. 2014;1842(11):2306-2317. [
DOI:10.1016/j.bbadis.2014.09.001]
106. McGinn J, Zhang F, Aziz M, Yang W-L, Nicastro J, Coppa GF, et al. The protective effect of a short peptide derived from cold-inducible RNA-binding protein in renal ischemia-reperfusion injury. Shock. 2018;49(3):269-76. [
DOI:10.1097/SHK.0000000000000988]
107. Chujo K, Ueno M, Asaga T, Sakamoto H, Shirakami G, Ueki M. Atrial natriuretic peptide enhances recovery from ischemia/reperfusion-induced renal injury in rats. J Biosci Bioeng. 2010;109(6):526-30. [
DOI:10.1016/j.jbiosc.2009.11.021]
108. Scindia Y, Dey P, Thirunagari A, Liping H, Rosin DL, Floris M, et al. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. J Am Soc Nephrol. 2015;26(11):2800-14. [
DOI:10.1681/ASN.2014101037]
109. Li D, Zhang J, Yuan S, Wang C, Chang J, Tong Y, et al. TGF-β1 peptide-based inhibitor P144 ameliorates renal fibrosis after ischemia-reperfusion injury by modulating alternatively activated macrophages. Cell Prolif. 2022;55(10):13299. [
DOI:10.1111/cpr.13299]
110. Chen Y, Harty GJ, Zheng Y, Iyer SR, Sugihara S, Sangaralingham SJ, et al. CRRL269: a novel particulate guanylyl cyclase a receptor peptide activator for acute kidney injury. Circ Res. 2019;124(10):1462-72. [
DOI:10.1161/CIRCRESAHA.118.314164]
111. Rübig E, Stypmann J, Van Slyke P, Dumont DJ, Spieker T, Buscher K, et al. The synthetic Tie2 agonist peptide vasculotide protects renal vascular barrier function in experimental acute kidney injury. Sci Rep. 2016; 6:22111. [
DOI:10.1038/srep22111]
112. Van Rijt WG, Nieuwenhuijs-Moeke GJ, Van Goor H, Jespersen B, Ottens PJ, Ploeg RJ, et al. ARA290, a non-erythropoietic EPO derivative, attenuates renal ischemia/reperfusion injury. J Transl Med. 2013;11:9. [
DOI:10.1186/1479-5876-11-9]
113. Cao X, Xia HY, Zhang T, Qi LC, Zhang BY, Cui R, et al. Protective effect of lyophilized recombinant human brain natriuretic peptide on renal ischemia/reperfusion injury in mice. Genet Mol Res. 2015;14(4):13300-11. [
DOI:10.4238/2015.October.26.26]
114. Hao H, Bao F, Wang Y, Li N, Gong Y. Peptide therapy: New promising therapeutics for acute kidney injury. Drug Discov Today. 2025;30(6):104377. [
DOI:10.1016/j.drudis.2025.104377]
115. Zhou Y , Wang X , Yuan H, Wu L, Zhang B, Chen X, Zhang Y. Impact of recombinant human brain natriuretic peptide on emergency dialysis and prognosis in end-stage renal disease patients with type 4 cardiorenal syndrome. Sci Rep. 2023;13(1):20752. [
DOI:10.1038/s41598-023-48125-1]
116. Selvarajah V, Robertson D, Hansen L, Jermutus L, Smith K, Coggi A, et al. A randomized phase 2b trial examined the effects of the glucagon-like peptide-1 and glucagon receptor agonist cotadutide on kidney outcomes in patients with diabetic kidney disease. Kidney Int. 2024;106(6):1170-80. [
DOI:10.1016/j.kint.2024.08.023]
117. Swärd K, Valsson F, Odencrants P, Samuelsson O, Ricksten S-E. Recombinant human atrial natriuretic peptide in ischemic acute renal failure: A randomized placebo-controlled trial. Crit Care Med. 2004;32(6):1310-5. [
DOI:10.1097/01.CCM.0000128560.57111.CD]
118. Chalikias G, Drosos I, Tziakas DN. Prevention of contrast-induced acute kidney injury: An update. Cardiovasc Drugs Ther. 2016;30(5): 515-24. [
DOI:10.1007/s10557-016-6683-0]
119. Saito K, Uchino S, Fujii T, Saito S, Takinami M, Uezono S. Effect of low-dose atrial natriuretic peptide in critically ill patients with acute kidney injury: A retrospective, single-center study with propensity-score matching. BMC Nephrol. 2020;21(1):31. [
DOI:10.1186/s12882-020-1701-7]
120. Tholén M, Kolsrud O, Dellgren G, Karason K, Lannemyr L, Ricksten S-E. Atrial natriuretic peptide in the prevention of acute renal dysfunction after heart transplantation-a randomized placebo-controlled double-blind trial. Acta Anaesthesiol Scand. 2023;67(6):738-45. [
DOI:10.1111/aas.14241]
121. Russo S, De Rasmo D, Signorile A, Corcelli A, Lobasso S. Beneficial effects of SS-31 peptide on cardiac mitochondrial dysfunction in tafazzin knockdown mice. Sci Rep. 2022;12(1):19847. [
DOI:10.1038/s41598-022-24231-4]
122. Zhang X, Bowen E, Zhang M, Szeto HH, Deng XH, Rodeo SA. SS-31 as a mitochondrial protectant in the treatment of tendinopathy: Evaluation in a murine supraspinatus tendinopathy model. J Bone Joint Surg Am. 2022;104(21):1886-94. [
DOI:10.2106/JBJS.21.01449]