Volume 29, Issue 4 (4-2025)                   IBJ 2025, 29(4): 260-266 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akrami H, Fattahi M R, Zeraatiannejad M, Sarvari J, Nikmanesh Y, Mansourabadi Z et al . Association of rs4646287 Polymorphism with the Risk of Hepatitis B Virus Infection and the Progression of Hepatocellular Carcinoma in an Iranian Population. IBJ 2025; 29 (4) :260-266
URL: http://ibj.pasteur.ac.ir/article-1-4979-en.html
Abstract:  
Background: Hepatitis B virus (HBV) is responsible for more than one million deaths annually, mainly due to HBV-related diseases and hepatocellular carcinoma (HCC). HBV enters hepatocytes and interacts with the sodium taurocholate co-transporting polypeptide. While several single nucleotide polymorphisms (SNPs) have been linked to HBV infection and HCC, further research is needed to clarify the precise role of SNPs. The relationship of the rs4646287 SNP with the risk of HBV infection and the progression of cirrhosis and HCC has been investigated in different populations. This study aimed to evaluate the association of the rs4646287 SNP with HBV infection, cirrhosis, and HCC in an Iranian population.
Methods: The whole blood DNA was extracted from healthy individuals and patients with HBV, cirrhosis, and HCC. Primers for the C and T variants were designed using Primer1. The genotypes of the samples were identified using Tetra-ARMS PCR. The Tetra-ARMS PCR products were analyzed by electrophoresis on 2.5% agarose gels.
Results: Individuals with the rs4646287 TT genotype exhibited a significantly reduced risk of developing cirrhosis and HCC compared to healthy controls. The TT genotype also showed a decreased correlation between the HBV group and those with cirrhosis and HCC.
Conclusion: Our findings suggest that the rs4646287 TT genotype is associated with a lower risk of developing HBV-related diseases and HCC in an Iranian population.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

References
1. Tourkochristou E, Assimakopoulos SF, Thomopoulos K, Marangos M, Triantos C. NAFLD and HBV interplay-related mechanisms underlying liver disease progression. Front Immunol. 2022;13:965548. [DOI:10.3389/fimmu.2022.965548]
2. Razavi-Shearer D, Gamkrelidze I, Pan C, Jia J, Berg T, Gray R, et al. Global prevalence, cascade of care, and prophylaxis coverage of hepatitis B in 2022: A modelling study. lancet Gastroenterol hepatol. 2023 Oct 1;8(10):879-907.
3. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: Incidence and risk factors. Gastroenterology. 2004;127(5):35-50. [DOI:10.1053/j.gastro.2004.09.014]
4. Najafimemar Z, Tabarraei A, Talei G, Moradi A. Prevalence and genotyping of torque teno virus in HBV/HIV and chronic HBV patients in Iran. IBJ. 2018;22(5):338-44. [DOI:10.29252/ibj.22.5.338]
5. Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 2016;64(1):84-101. [DOI:10.1016/j.jhep.2016.02.021]
6. Liu Q, Liu G, Lin Z, Lin Z, Tian N, Lin X, et al. The association of lncRNA SNPs and SNPs‐environment interactions based on GWAS with HBV‐related HCC risk and progression. Mol Genet Genomic Med. 2021;9(2):1585. [DOI:10.1002/mgg3.1585]
7. Zhang Y-Q, Peng L-J, Cao Y-R, Zeng Z-P, Wu Y-J, Shi H, et al. Risk factors for hepatocellular carcinoma in cirrhotic patients with chronic hepatitis B. Genet Test Mol Biomarkers. 2016;20(9):535-43. [DOI:10.1089/gtmb.2016.0062]
8. Tan X, Xiang Y, Shi J, Chen L, Yu D. Targeting NTCP for liver disease treatment: A promising strategy. J Pharm Anal. 2024;14(9):100979. [DOI:10.1016/j.jpha.2024.100979]
9. Li S, Hao L, Deng J, Zhang J, Yu F, Ye F, et al. The culprit behind HBV-infected hepatocytes: NTCP. Drug Des Devel Ther. 2024:18:4839-58. [DOI:10.2147/DDDT.S480151]
10. Zhang J, Liu L, Lin Z, Ji X, Pi L, Lin X, et al. SNP‐SNP and SNP‐environment interactions of potentially functional HOTAIR SNPs modify the risk of hepatocellular carcinoma. Mol Carcinog. 2019;58(5):633-42. [DOI:10.1002/mc.22955]
11. Astarini FD, Ratnasari N, Wasityastuti W. Update on non-alcoholic fatty liver disease-associated single nucleotide polymorphisms and their involvement in liver steatosis, inflammation, and fibrosis: A narrative review. IBJ. 2022;26(4):252-68. [DOI:10.52547/ibj.3647]
12. Chirumbolo S. Single nucleotide polymorphism (SNP) in the adiponectin gene and cardiovascular disease. IBJ. 2016;20(4):187-8.
13. Yan H, Wang C. Key factors for "Fishing" NTCP as a functional receptor for HBV and HDV. Viruses. 2023;15(2):512. [DOI:10.3390/v15020512]
14. Chen YH, Tsuei D-J, Lai M-W, Wen W-H, Chiang C-L, Wu J-F, et al. Genetic variants of NTCP gene and hepatitis B vaccine failure in Taiwanese children of hepatitis B e antigen positive mothers. Hepatol Int. 2022;16(4):789-98. [DOI:10.1007/s12072-022-10350-7]
15. Nyarko E, Obirikorang C, Owiredu W, Adu EA, Acheampong E, Aidoo F, et al. NTCP gene polymorphisms and hepatitis B virus infection status in a Ghanaian population. Virol J. 2020;17(1):1-8. [DOI:10.1186/s12985-020-01376-0]
16. Thilakarathna WPW, Rupasinghe HV, Ridgway ND. Mechanisms by which probiotic bacteria attenuate the risk of hepatocellular carcinoma. Int J Mol Sci. 2021;22(5):2606. [DOI:10.3390/ijms22052606]
17. Luo X, Wang Y, Shen A, Deng H, Ye M. Relationship between the rs2596542 polymorphism in the MICA gene promoter and HBV/HCV infection-induced hepatocellular carcinoma: A meta-analysis. BMC Med Genet. 2019;20(1):142. [DOI:10.1186/s12881-019-0871-2]
18. Wei X, Yang X, Duan S, Lin Q, Qiu M, Wen Q, et al. Multi-omics integration analysis of the amino-acid metabolism-related genes identifies putatively causal variants of ACCS associated with hepatitis B virus-related hepatocellular carcinoma survival. BMC Cancer. 2025;25(1):284. [DOI:10.1186/s12885-025-13604-3]
19. Su Z, Cai B, Wu X, Li L, Wei B, Meng L, et al. NTCP polymorphisms were associated with fibrosis development in patients with chronic HBV infection. J Infect Dev Ctries. 2022;16(1):179-86. [DOI:10.3855/jidc.15138]
20. He C, He H-Y, Sun C-F, Ojha SC, Wang H, Deng C-L, et al. The relationship between NTCP gene varieties and the progress of liver disease after HBV infection: An updated systematic review and meta-analysis.Am J Med Sci. 2022;364(2):207-19. [DOI:10.1016/j.amjms.2022.03.014]
21. Uvarova A, Ustiugova A, Mitkin N, Schwartz A, Korneev K, Kuprash D. The minor T allele of the single nucleotide polymorphism rs13360222 decreases the activity of the HAVCR2 gene enhancer in a cell model of human macrophages. Mol Biol. 2022;56(1):90-6. [DOI:10.1134/S0026893322010095]
22. Bekker V, Chanock SJ, Yeager M, Hutchinson AA, Von Hahn T, Chen S, et al. Genetic variation in CLDN1 and susceptibility to hepatitis C virus infection. J Viral Hepat. 2010;17(3):192-200. [DOI:10.1111/j.1365-2893.2009.01166.x]
23. Yang J, Yang Y, Xia M, Wang L, Zhou W, Yang Y, et al. A genetic variant of the NTCP gene is associated with HBV infection status in a Chinese population. BMC. 2016:12:16:211. [DOI:10.1186/s12885-016-2257-6]
24. Chuaypen N, Tuyapala N, Pinjaroen N, Payungporn S, Tangkijvanich P. Association of NTCP polymorphisms with clinical outcome of hepatitis B infection in Thai individuals. BMC Med Genet. 2019;20(1):87. [DOI:10.1186/s12881-019-0823-x]
25. Fadlallah H, El Masri D, Bahmad HF, Abou-Kheir W, El Masri J. Update on the complications and management of liver cirrhosis. Med Sci. 2025;13(1):13. [DOI:10.3390/medsci13010013]
26. Su Z, Li Y, Liao Y, Cai B, Chen J, Zhang J, et al. Association of the gene polymorphisms in sodium taurocholate cotransporting polypeptide with the outcomes of hepatitis B infection in Chinese Han population. Infect Genet Evol. 2014;27:77-82. [DOI:10.1016/j.meegid.2014.07.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb