Volume 29, Issue 4 (4-2025)                   IBJ 2025, 29(4): 173-188 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tarighi P, Mousavi Esfahani M, Emamjomeh A, Mirjalili Z, Mirzabeygi P. Optimizing Cancer Treatment: A Comprehensive Review of Active and Passive Drug Delivery Strategies. IBJ 2025; 29 (4) :173-188
URL: http://ibj.pasteur.ac.ir/article-1-4960-en.html
Abstract:  
Nanocarriers as powerful tools for delivering drugs to tumors provide new strategies for cancer treatment. These delivery systems encompass a diverse variety of structures, including polymeric nanoparticles (NPs), liposomes, dendrimers, micelles, and inorganic NPs such as gold and silica. Each type exhibits distinct physicochemical advantages that contribute to stability, drug-loading capacity, and targeting efficacy. Engineered nanocarriers can be utilized for the active targeting of tumor-specific receptors or for passive targeting of tumors via the enhanced permeability (EPR) and retention effect, a characteristic of abnormal tumor vasculature. This targeting approach enables the precise delivery of the therapeutic agents at tumor sites, increasing drug efficacy while minimizing exposure to healthy tissues. The benefits of these strategies include reduced systemic adverse effects, improved bioavailability, and an optimized therapeutic index. This review examines both active and passive drug delivery systems, with a special focus on the characteristics of the EPR effect.
Type of Study: Review Article | Subject: Cancer Biology

References
1. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: An updated review. Int J Pharm Investig. 2012;2(1):2-11. [DOI:10.4103/2230-973X.96920]
2. Jamrozy M, Kudlacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci. 2024;25(2):786. [DOI:10.3390/ijms25020786]
3. Singh N, Vayer P, Tanwar S, Poyet J-L, Tsaioun K, Villoutreix BO, editors. Drug discovery and development: introduction to the general public and patient groups. Front Drug Discov. 2023;(3). [DOI:10.3389/fddsv.2023.1201419]
4. Mircioiu C, Voicu V, Anuta V, Tudose A, Celia C, Paolino D, et al. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics. 2019;11(3):140. [DOI:10.3390/pharmaceutics11030140]
5. Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules. 2021;26(19):5905. [DOI:10.3390/molecules26195905]
6. Alqosaibi AI. Nanocarriers for anticancer drugs: Challenges and perspectives. Saudi J Biol Sci. 2022;29(6):103298. [DOI:10.1016/j.sjbs.2022.103298]
7. Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett. 2018;17(2):849-65. [DOI:10.1007/s10311-018-00841-1]
8. Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol. 2022;15(1):132. [DOI:10.1186/s13045-022-01320-5]
9. Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J Pers Med. 2021;11(8):771. [DOI:10.3390/jpm11080771]
10. Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, et al. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers. 2021;13(4):670. [DOI:10.3390/cancers13040670]
11. Xu Y, Wu H, Huang J, Qian W, Martinson DE, Ji B, et al. Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles. Theranostics. 2020;10(6):2479-94. [DOI:10.7150/thno.39560]
12. Li J, Wang Q, Xia G, Adilijiang N, Li Y, Hou Z, et al. Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics. 2023;15(9):2233. [DOI:10.3390/pharmaceutics15092233]
13. Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med. 2021;11(6):571. [DOI:10.3390/jpm11060571]
14. Caro C, Avasthi A, Paez-Munoz JM, Pernia Leal M, Garcia-Martin ML. Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci. 2021;9(23):7984-95. [DOI:10.1039/D1BM01398J]
15. Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, et al. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci. 2024;193:106688. [DOI:10.1016/j.ejps.2023.106688]
16. Kim J, Cho H, Lim DK, Joo MK, Kim K. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors. Int J Mol Sci. 2023;24(12):10082. [DOI:10.3390/ijms241210082]
17. Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, et al. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. Int J Nanomedicine. 2021;16:1525-51. [DOI:10.2147/IJN.S293427]
18. Guo Z, Xiao Y, Wu W, Zhe M, Yu P, Shakya S, et al. Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives. J Nanobiotechnology. 2025;23(1):157. [DOI:10.1186/s12951-025-03252-x]
19. Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev. 2022;188:114449. [DOI:10.1016/j.addr.2022.114449]
20. Eskandari Z, Bahadori F, Celik B, Onyuksel H. Targeted Nanomedicines for Cancer Therapy, From Basics to Clinical Trials. J Pharm Pharm Sci. 2020;23(1):132-57. [DOI:10.18433/jpps30583]
21. Behera A, Padhi S. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review. Environ Chem Lett. 2020;18(5):1557-67. [DOI:10.1007/s10311-020-01022-9]
22. Gawali P, Saraswat A, Bhide S, Gupta S, Patel K. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate'for nanomedicine in preclinical studies? Nanomed. 2023;18(2):169-90. [DOI:10.2217/nnm-2022-0257]
23. Abdulbaqi IM, Assi RA, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T, et al. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of the lung cancer: An Update. Pharmaceuticals. 2021;14(8):725. [DOI:10.3390/ph14080725]
24. Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed Technol. 2024;5:109-22. [DOI:10.1016/j.bmt.2023.09.001]
25. Sharma N, Saifi MA, Singh SB, Godugu C. In vivo studies: toxicity and biodistribution of nanocarriers in organisms. Nanotoxicity. 2020:41-70. [DOI:10.1016/B978-0-12-819943-5.00003-8]
26. Gomes SIL, Guimaraes B, Gasco P, Blosi M, Costa AL, Scott-Fordsmand JJ, et al. Nanoemulsion carriers for drug delivery: Assessment of environmental hazards. Environ Pollut. 2023;328:121669. [DOI:10.1016/j.envpol.2023.121669]
27. Shah J, Nair AB, Jacob S, Patel RK, Shah H, Shehata TM, et al. Nanoemulsion Based Vehicle for Effective Ocular Delivery of Moxifloxacin Using Experimental Design and Pharmacokinetic Study in Rabbits. Pharmaceutics. 2019;11(5):230. [DOI:10.3390/pharmaceutics11050230]
28. Gu W, Meng F, Haag R, Zhong Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J Control Release. 2021;329:676-95. [DOI:10.1016/j.jconrel.2020.10.003]
29. Zhong Y, Jia C, Zhang X, Liao X, Yang B, Cong Y, et al. Targeting drug delivery system for platinum (Ⅳ)-Based antitumor complexes. Eur J Med Chem. 2020:194:112229. [DOI:10.1016/j.ejmech.2020.112229]
30. Beach MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, et al. Polymeric Nanoparticles for Drug Delivery. Chem Rev. 2024;124(9):5505-616. [DOI:10.1021/acs.chemrev.3c00705]
31. Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, et al. Polymeric nanoparticles-Promising carriers for cancer therapy. Front Bioeng Biotechnol. 2022;10:1024143. [DOI:10.3389/fbioe.2022.1024143]
32. Zhang Q, Kuang G, Zhang L, Zhu Y. Nanocarriers for platinum drug delivery. Biomed Technol. 2023;2:77-89. [DOI:10.1016/j.bmt.2022.11.011]
33. Hamishehkar H, Bahadori MB, Vandghanooni S, Eskandani M, Nakhlband A. Preparation, characterization and anti-proliferative effects of sclareol-loaded solid lipid nanoparticles on A549 human lung epithelial cancer cells. J Drug Deliv Sci Technol. 2018:45:272-80. [DOI:10.1016/j.jddst.2018.02.017]
34. Tajbakhsh A, Hasanzadeh M, Rezaee M, Khedri M, Khazaei M, ShahidSales S, et al. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by targeting of cellular and physiological dysregulated pathways. J Cell Physiol. 2018;233(3):2183-92. [DOI:10.1002/jcp.25961]
35. Guorgui J, Wang R, Mattheolabakis G, Mackenzie GG. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin's lymphoma in mice. Arch Biochem Biophys. 2018;648:12-9. [DOI:10.1016/j.abb.2018.04.012]
36. Clemente N, Ferrara B, Gigliotti CL, Boggio E, Capucchio MT, Biasibetti E, et al. Solid Lipid Nanoparticles Carrying Temozolomide for Melanoma Treatment. Preliminary In Vitro and In Vivo Studies. Int J Mol Sci. 2018;19(2):255. [DOI:10.3390/ijms19020255]
37. Jia Y, Jiang Y, He Y, Zhang W, Zou J, Magar KT, et al. Approved Nanomedicine against Diseases. Pharmaceutics. 2023;15(3):774. [DOI:10.3390/pharmaceutics15030774]
38. Tian Y, Shi Y. Mechanisms of Targeted Drug Delivery for Liver Cancer: Active, Passive, and Subcellular Strategies. J Biosci Med. 2025;13(2):369-84. [DOI:10.4236/jbm.2025.132028]
39. Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong TJST, et al. Nanomedicine in cancer therapy. 2023;8(1):293. [DOI:10.1038/s41392-023-01536-y]
40. Shah DP. Fundamentals of Nanocarriers and Drug Targeting. Nanocarriers. 2021:3-42. [DOI:10.1007/978-981-33-4497-6_1]
41. Khan M. Nanoparticle-Mediated Cancer Chemotherapy. Personalized and Precision Nanomedicine for Cancer Treatment. Springer. 2024;(1):183-216. [DOI:10.1007/978-981-97-3545-7_9]
42. He Y, Zhang W, Xiao Q, Fan L, Huang D, Chen W, et al. Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment. Asian J Pharm Sci. 2022;17(6):817-3. [DOI:10.1016/j.ajps.2022.11.002]
43. Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. Cancer Drug Resist. 2020;3(4):930-46. [DOI:10.20517/cdr.2020.68]
44. Elsewedy HS, Al Dhubiab BE, Mahdy MA, Elnahas HM. A review article on the basic concepts of drug delivery systems as targeting agents. Int J Pharma Med Biol Sci. 2021;10(1):23-9. [DOI:10.18178/ijpmbs.10.1.23-29]
45. Kudgus RA, Szabolcs A, Khan JA, Walden CA, Reid JM, Robertson JD, et al. Inhibiting the growth of pancreatic adenocarcinoma invitro and in vivo through targeted treatment with designer gold nanotheraputics. Plos one. 2013;8(3):e57522. [DOI:10.1371/journal.pone.0057522]
46. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469-78. [DOI:10.1038/nnano.2007.223]
47. Elechalawar CK, Hossen MN, Shankarappa P, Peer CJ, Figg WD, Robertson JD, et al. Targeting Pancreatic Cancer Cells and Stellate Cells Using Designer Nanotherapeutics in vitro. Int J Nanomedicine. 2020;15:991-1003. [DOI:10.2147/IJN.S234112]
48. Chen S, Cheng S, Cai J, Liu Z, Li H, Wang P, et al. The current therapeutic cancer vaccines landscape in non‐small cell lung cancer. Int J Cancer. 2024;155(11):1909-27. [DOI:10.1002/ijc.35088]
49. Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185-98. [DOI:10.1111/jphp.13098]
50. Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies. 2020;9(3):34. [DOI:10.3390/antib9030034]
51. Salahpour Anarjan F. Active targeting drug delivery nanocarriers: Ligands. Nano-Struct Nano-Objects. 2019;19:100370. [DOI:10.1016/j.nanoso.2019.100370]
52. Gumala A, Sutriyo S. Active targeting gold nanoparticle for chemotherapy drug delivery: A review. Pharm Sci. 2022;28(3):342-54. [DOI:10.34172/PS.2021.75]
53. Al-Mansoori L, Elsinga P, Goda SK. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy. Biomed Pharmacother. 2021;144:112260. [DOI:10.1016/j.biopha.2021.112260]
54. Vasantha Ramachandran R, Bhat R, Kumar Saini D, Ghosh A. Theragnostic nanomotors: Successes and upcoming challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(6):173. [DOI:10.1002/wnan.1736]
55. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: The biological missile for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93. [DOI:10.1038/s41392-022-00947-7]
56. He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: Mechanisms and clinical studies. MedComm. 2024;5(8):671. [DOI:10.1002/mco2.671]
57. Ferraro E, Drago JZ, Modi S. Implementing antibody-drug conjugates (ADCs) in HER2-positive breast cancer: state of the art and future directions. Breast Cancer Res. 2021;23(1):84. [DOI:10.1186/s13058-021-01459-y]
58. Najjar MK, Manore SG, Regua AT, Lo HW. Antibody-Drug Conjugates for the Treatment of HER2-Positive Breast Cancer. Genes (Basel). 2022;13(11):2065. [DOI:10.3390/genes13112065]
59. Gogia P, Ashraf H, Bhasin S, Xu Y. Antibody-Drug Conjugates: A review of approved drugs and their clinical level of evidence. Cancers. 2023;15(15):3886. [DOI:10.3390/cancers15153886]
60. Xiao X, Li H, Zhao L, Zhang Y, Liu Z. Oligonucleotide aptamers: Recent advances in their screening, molecular conformation and therapeutic applications. Biomed Pharmacother. 2021;143:112232. [DOI:10.1016/j.biopha.2021.112232]
61. Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, et al. Advances in aptamer-based biosensors and cell-internalizing SELEX technology for diagnostic and therapeutic application. Biosensors. 2022;12(11):922. [DOI:10.3390/bios12110922]
62. Carvalho J, Paiva A, Cabral Campello MP, Paulo A, Mergny JL, Salgado GF, et al. Aptamer-based targeted delivery of a G-quadruplex ligand in cervical cancer cells. Sci Rep. 2019;9(1):7945. [DOI:10.1038/s41598-019-44388-9]
63. Myint SS, Laomeephol C, Thamnium S, Chamni S, Luckanagul JA. Hyaluronic acid nanogels: A promising platform for therapeutic and theranostic applications. Pharmaceutics. 2023;15(12):2671. [DOI:10.3390/pharmaceutics15122671]
64. Prajapati VD, Maheriya PM. Hyaluronic acid as potential carrier in biomedical and drug delivery applications. In: Maiti S, Jana S, editors. Functional Polysaccharides for Biomedical Applications. 2019:213-65. [DOI:10.1016/B978-0-08-102555-0.00007-8]
65. Gao S, Wang J, Tian R, Wang G, Zhang L, Li Y, et al. Construction and evaluation of a targeted hyaluronic acid nanoparticle/photosensitizer complex for cancer photodynamic therapy. ACS Appl Mater Interfaces. 2017;9(38):32509-19. [DOI:10.1021/acsami.7b09331]
66. Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules. 2022;27(21):7232. [DOI:10.3390/molecules27217232]
67. Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers. 2019;11(5):640. [DOI:10.3390/cancers11050640]
68. Lu Z, Long Y, Cun X, Wang X, Li J, Mei L, et al. A size-shrinkable nanoparticle-based combined anti-tumor and anti-inflammatory strategy for enhanced cancer therapy. Nanoscale. 2025;17(20):13001. [DOI:10.1039/D5NR90093J]
69. Venturelli S, Leischner C, Helling T, Burkard M, Marongiu L. Vitamins as possible cancer biomarkers: Significance and limitations. Nutrients. 2021;13(11):3914. [DOI:10.3390/nu13113914]
70. Jurczyk M, Jelonek K, Musial-Kulik M, Beberok A, Wrzesniok D, Kasperczyk J. Single- versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics. 2021;13(3):326. [DOI:10.3390/pharmaceutics13030326]
71. Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, et al. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res. 2019;80(4):404-24. [DOI:10.1002/ddr.21545]
72. Koneru T, McCord E, Pawar S, Tatiparti K, Sau S, Iyer AK. Transferrin: Biology and use in receptor-targeted nanotherapy of gliomas. ACS Omega. 2021;6(13):8727-33. [DOI:10.1021/acsomega.0c05848]
73. Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR. Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents. Front Immunol. 2021;12:607692. [DOI:10.3389/fimmu.2021.607692]
74. Richard C, Verdier F. Transferrin receptors in erythropoiesis. Int J Mol Sci. 2020;21(24). [DOI:10.3390/ijms21249713]
75. Pardridge WM, Chou T. Mathematical models of blood-brain barrier transport of monoclonal antibodies targeting the transferrin receptor and the insulin receptor. Pharmaceuticals. 2021;14(6):535. [DOI:10.3390/ph14060535]
76. Kawak P, Sawaftah NMA, Pitt WG, Husseini GA. Transferrin-targeted liposomes in glioblastoma therapy: A review. Int J Mol Sci. 2023;24(17):13262. [DOI:10.3390/ijms241713262]
77. Yuan MQ, Zhu F, Lou JY, Yuan WM, Fu L, Liu S, et al. The anti-tumoral efficacy of a docetaxel-loaded liposomal drug delivery system modified with transferrin for ovarian cancer. Drug Res. 2014;64(4):195-202. [DOI:10.1055/s-0033-1355335]
78. Manivannan S, Nagaraj S, Narayan S. A Reflection on the Mechanism of the Role of Nanoparticles in Increasing the Efficacy of Anti-tumour Properties of Docetaxel. Curr Pathobiol Rep. 2021;9(1):79-91. [DOI:10.1007/s40139-021-00223-3]
79. Yu L, Liu S, Jia S, Xu F. Emerging frontiers in drug delivery with special focus on novel techniques for targeted therapies. Biomed Pharmacother. 2023;165:115049. [DOI:10.1016/j.biopha.2023.115049]
80. Setia A, Sahu RK, Ray S, Widyowati R, Ekasari W, Saraf S. Advances in hybrid vesicular-based drug delivery systems: improved biocompatibility, targeting, therapeutic efficacy and pharmacokinetics of anticancer drugs. Curr Drug Metab. 2022;23(9):757-80. [DOI:10.2174/1389200223666220627110049]
81. Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv. 2021;18(2):205-27. [DOI:10.1080/17425247.2021.1828339]
82. Altinbasak I, Alp Y, Sanyal R, Sanyal A. Theranostic nanogels: Multifunctional agents for simultaneous therapeutic delivery and diagnostic imaging. Nanoscale. 2024:16:14033-56. [DOI:10.1039/D4NR01423E]
83. Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Med. 2017;9(60):1-16. [DOI:10.1186/s13073-017-0450-0]
84. Bian X, Zhou L, Luo Z, Liu G, Hang Z, Li H, et al. Emerging delivery systems for enabling precision nucleic acid therapeutics. ACS Nano. 2025;19(4):4039-83. [DOI:10.1021/acsnano.4c11858]
85. Lakshmaiah A, Korrapati C, Suresh C, Raghavan R. Synthetic Biology and AI: Ethical deployment in bioengineering and biomedical research. spatially variable genes in cancer: Development, progression, and treatment response. IGI Global. 2025:265-90. [DOI:10.4018/979-8-3693-7728-4.ch010]
86. Wright L, Barnes TJ, Prestidge CA. Oral delivery of protein-based therapeutics: gastroprotective strategies, physiological barriers and in vitro permeability prediction. Int J Pharm. 2020;585:119488. [DOI:10.1016/j.ijpharm.2020.119488]
87. Bukhari SI, Imam SS, Ahmad MZ, Vuddanda PR, Alshehri S, Mahdi WA, et al. Recent progress in lipid nanoparticles for cancer theranostics: Opportunity and challenges. Pharmaceutics. 2021;13(6):840. [DOI:10.3390/pharmaceutics13060840]
88. Zhang P, Ma X, Guo R, Ye Z, Fu H, Fu N, et al. Organic nanoplatforms for iodinated contrast media in CT imaging. Molecules. 2021;26(23):7063. [DOI:10.3390/molecules26237063]
89. Garg A, Garg R. Current advances in colloidal based delivery systems for tacrolimus. J Drug Deliv Sci Technol. 2022;68:103108. [DOI:10.1016/j.jddst.2022.103108]
90. Zhang W, Shi Y, Abd Shukor S, Vijayakumaran A, Vlatakis S, Wright M, et al. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. Nanoscale. 2022;14(8):2943-65. [DOI:10.1039/D1NR07882H]
91. Attia MF, Swasy MI, Akasov R, Alexis F, Whitehead DC. Strategies for high grafting efficiency of functional ligands to lipid nanoemulsions for RGD-mediated targeting of tumor cells in vitro. ACS Appl Bio Mater. 2020;3(8):5067-79. [DOI:10.1021/acsabm.0c00567]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb