1. MacDonald MA, Barry C, Groves T, Martínez VS, Gray PP, Baker K, et al. Modeling apoptosis resistance in CHO cells with CRISPR‐mediated knockouts of Bak1, Bax, and Bok. Biotechnol Bioeng. 2022;119(6):1380-91. [
DOI:10.1002/bit.28062]
2. Lee JS, Grav LM, Lewis NE, Kildegaard HF. CRISPR/Cas9‐mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnol J. 2015;10(7):979-94. [
DOI:10.1002/biot.201500082]
3. Orellana CA, Martínez VS, MacDonald MA, Henry MN, Gillard M, Gray PP, et al. 'Omics driven discoveries of gene targets for apoptosis attenuation in CHO cells. Biotechnol Bioeng. 2021;118(1):481-90. [
DOI:10.1002/bit.27548]
4. Tang D, Lam C, Bauer N, Auslaender S, Snedecor B, Laird MW, et al. Bax and Bak knockout apoptosis‐resistant Chinese hamster ovary cell lines significantly improve culture viability and titer in intensified fed‐batch culture process. Biotechnol Prog. 2022;38(2):e3228. [
DOI:10.1002/btpr.3228]
5. Lim SF, Chuan KH, Liu S, Loh SO, Chung BY, Ong CC, et al. RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metab Eng. 2006;8(6):509-22. [
DOI:10.1016/j.ymben.2006.05.005]
6. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770-6. [
DOI:10.1038/35037710]
7. Kalkan AK, Palaz F, Sofija S, Elmousa N, Ledezma Y, Cachat E, et al. Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnol Adv. 2023:108115. [
DOI:10.1016/j.biotechadv.2023.108115]
8. Shin SW, Lee JS. CHO cell line development and engineering via site-specific integration: Challenges and opportunities. Biotechnol Bioprocess Eng. 2020;25(5):633-45. [
DOI:10.1007/s12257-020-0093-7]
9. Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321-34. [
DOI:10.1038/nrg3686]
10. Donohoue PD, Barrangou R, May AP. Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol. 2018;36(2):134-46. [
DOI:10.1016/j.tibtech.2017.07.007]
11. Siva N, Gupta S, Gupta A, Shukla JN, Malik B, Shukla N. Genome-editing approaches and applications: A brief review on CRISPR technology and its role in cancer. 3 Biotech. 2021;11(3):146. [
DOI:10.1007/s13205-021-02680-4]
12. Rahimi A, Karimipoor M, Mahdian R, Alipour A, Hosseini S, Kaghazian H, et al. Targeting caspase-3 gene in rCHO cell line by CRISPR/Cas9 editing tool and its effect on protein production in manipulated cell line. Iran J Pharm Res. 2023;21(1):e130236. [
DOI:10.5812/ijpr-130236]
13. Rahimi A, Karimipoor M, Mahdian R, Alipour A, Hosseini S, Mohammadi M, et al. Efficient CRISPR/Cas9-mediated BAX gene ablation in CHO cells to impair apoptosis and enhance recombinant protein production. Iran J Biotechnol. 2023;21(2):e3388. [
DOI:10.5812/ijpr-130236]
14. Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol:Chloroform. CSH Protoc. 2006;2006(1):4455. [
DOI:10.1101/pdb.prot4455]
15. Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22(23):12827. [
DOI:10.3390/ijms222312827]
16. Nössing C, Ryan KM. 50 years on and still very much alive:'Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics'. Br J Cancer. 2023;128(3):426-31. [
DOI:10.1038/s41416-022-02020-0]
17. Li W, Fan Z, Lin Y, Wang T-Y. Serum-free medium for recombinant protein expression in Chinese hamster ovary cells. Front Bioeng Biotechnol. 2021;9:646363. [
DOI:10.3389/fbioe.2021.646363]
18. Xiong K, Marquart KF, la Cour Karottki KJ, Li S, Shamie I, Lee JS, et al. Reduced apoptosis in Chinese hamster ovary cells via optimized CRISPR interference. Biotechnol Bioeng. 2019;116(7):1813-9. [
DOI:10.1002/bit.26969]
19. Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J Ind Eng Chem. 2020;91(4):37-53. [
DOI:10.1016/j.jiec.2020.08.009]
20. Mohan C, Kim YG, Koo J, Lee GM. Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol J. 2008;3(5):624-30. [
DOI:10.1002/biot.200700249]
21. Tripathi NK, Shrivastava A. Recent developments in bioprocessing of recombinant proteins: Expression hosts and process development. Front Bioeng Biotechnol. 2019;7:420. [
DOI:10.3389/fbioe.2019.00420]
22. Singh G, Guibao CD, Seetharaman J, Aggarwal A, Grace CR, McNamara DE, et al. Structural basis of BAK activation in mitochondrial apoptosis initiation. Nat Commun. 2022;13(1):250. [
DOI:10.1038/s41467-021-27851-y]
23. Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta Mol Cell Res. 2022;1869(10):119317. [
DOI:10.1016/j.bbamcr.2022.119317]
24. Rodríguez-González J, Gutiérrez-Kobeh L. Apoptosis and its pathways as targets for intracellular pathogens to persist in cells. Parasitol Res. 2023;123(1):60. [
DOI:10.1007/s00436-023-08031-x]
25. Gitego N, Agianian B, Mak OW, Kumar MV V, Cheng EH, Gavathiotis E. Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis. Nat Commun 2023;14(1):8381. [
DOI:10.1038/s41467-023-44084-3]
26. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16(4):273-84. [
DOI:10.1038/nrd.2016.253]
27. Schweighofer SV, Jans DC, Keller-Findeisen J, Folmeg A, Ilgen P, Bates M, et al. Endogenous BAX and BAK form mosaic rings of variable size and composition on apoptotic mitochondria. Cell Death Differ. 2024;31(4):469-78. [
DOI:10.1038/s41418-024-01273-x]
28. Krasovec G, Horkan HR, Quéinnec É, Chambon J-P. Intrinsic apoptosis is evolutionarily divergent among metazoans. Evol Lett. 2023;8(2):267-82. [
DOI:10.1093/evlett/qrad057]
29. Cosentino K, Hertlein V, Jenner A, Dellmann T, Gojkovic M, Peña-Blanco A, et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Mol Cell. 2022;82(5):933-49. [
DOI:10.1016/j.molcel.2022.01.008]
30. Wolf BB, Schuler M, Echeverri F, Green DR. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem. 1999;274(43):30651-6. [
DOI:10.1074/jbc.274.43.30651]
31. Raab N, Mathias S, Alt K, Handrick R, Fischer S, Schmieder V, et al. CRISPR/Cas9‐mediated knockout of microRNA‐744 improves antibody titer of CHO production cell lines. Biotechnol J. 2019;14(5):1800477. [
DOI:10.1002/biot.201800477]
32. Henry MN, MacDonald MA, Orellana CA, Gray PP, Gillard M, Baker K, et al. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng. 2020;117(4):1187-203. [
DOI:10.1002/bit.27269]
33. Ronda C, Pedersen LE, Hansen HG, Kallehauge TB, Betenbaugh MJ, Nielsen AT, et al. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web‐based target finding tool. Biotechnol Bioeng. 2014;111(8):1604-16. [
DOI:10.1002/bit.25233]
34. McKenna S, García-Gutiérrez L, Matallanas D, Fey D. BAX and SMAC regulate bistable properties of the apoptotic caspase system. Sci Rep. 2021;11(1):3272. [
DOI:10.1038/s41598-021-82215-2]
35. Dadsena S, Arenas RC, Vieira G, Brodesser S, Melo MN, García-Sáez AJ. Lipid unsaturation promotes BAX and BAK pore activity during apoptosis. Nat Commun. 2024;15(1):4700. [
DOI:10.1038/s41467-024-49067-6]
36. Cuda CM, Pope RM, Perlman H. The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases. Nat Rev Rheumatol. 2016;12(9):543-58. [
DOI:10.1038/nrrheum.2016.132]
37. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. [
DOI:10.1080/01926230701320337]