Volume 29, Issue 1 And 2 (1-2025)                   IBJ 2025, 29(1 And 2): 36-48 | Back to browse issues page

Ethics code: IR.SHAHED.REC.1400.102


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sattari Sarvari S, Rezaei Adriani R, Nazarian S, Fotouhi A, Mousavi Gargari S L. Protective Immunity of a Novel Multi-Epitope Vaccine Encoding OMP31, TF, BLS, SOD, BP26, and L9 Against Brucella spp. Infection. IBJ 2025; 29 (1 and 2) :36-48
URL: http://ibj.pasteur.ac.ir/article-1-4933-en.html
Abstract:  
Background: Brucella is a type of bacteria that causes a disease known as brucellosis in both humans and animals. Many different vaccine formulations are available for this disease; however, vaccines based on epitopes have shown to be effective, especially in combating this pathogen. In the present study, we designed a multi-epitope vaccine against brucellosis using a chimeric protein that combines segments from various Brucella proteins known to contain both B- and T-cell epitopes.
Methods: In this study, a vaccine candidate was developed using multiple epitopes derived from various proteins, including OMP31, TF, BLS, SOD, BP26, and L9. These epitopes were selected based on their high density of both B-cell and T-cell epitopes. The construct of the vaccine candidate was inserted into a pEGFP-N1 vector and introduced into HEK-293T cells. Subsequently, the vaccine was tested on different groups of mice; some received the expressed protein in E. coli, while others received the DNA vaccine candidate. An ELISA assay was employed to evaluate the humoral immune response.
Results: Both the MEB protein (Pro/Pro) and pCI-MEB plasmid/MEB protein (DNA/Pro) groups showed a specific humoral response. The anti-DNA vaccine antibody titer did not rise as high as that of the protein groups; however, the observed protection indicated the efficiency of the DNA vaccine in activating the immune system. 
Conclusion: While the chimeric DNA vaccine candidate induced a weaker humoral response, it remained effective in protecting against virulent strains of B. abortus and B. melitensis in the challenge route.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Guo X, Zeng H, Li M, Xiao Y, Gu G, Song Z, et al. The mechanism of chronic intracellular infection with Brucella spp. Frontiers in cellular and infection microbiology. 2023;13:1129172. [DOI:10.3389/fcimb.2023.1129172]
2. Pappas G. The changing Brucella ecology: novel reservoirs, new threats. International journal of antimicrobial agents. 2010;36:S8-S11. [DOI:10.1016/j.ijantimicag.2010.06.013]
3. Khurana SK, Sehrawat A, Tiwari R, Prasad M, Gulati B, Shabbir MZ, et al. Bovine brucellosis-a comprehensive review. Veterinary Quarterly. 2021;41(1):61-88. [DOI:10.1080/01652176.2020.1868616]
4. Corbel MJ. Brucellosis: an overview. Emerging infectious diseases. 1997;3(2):213. [DOI:10.3201/eid0302.970219]
5. N Xavier M, A Paixao T, B den Hartigh A, M Tsolis R, L Santos R. Pathogenesis of Brucella spp. The open veterinary science journal. 2010;4(1). [DOI:10.2174/1874318801004010109]
6. Sung KY, Jung M, Shin M-K, Park H-E, Lee JJ, Kim S, et al. Induction of immune responses by two recombinant proteins of brucella abortus, outer membrane proteins 2b porin and Cu/Zn superoxide dismutase, in mouse model. Journal of Microbiology and Biotechnology. 2014;24(6):854-61. [DOI:10.4014/jmb.1312.12063]
7. Meletis E, Sakhaee E, Kostoulas P. Bayesian true prevalence estimation of brucellosis in sheep, goats, cattle and camels in southeast regions of Iran. Zoonoses and Public Health. 2024;71(2):170-7. [DOI:10.1111/zph.13095]
8. Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS microbiology reviews. 2010;34(3):379-94. [DOI:10.1111/j.1574-6976.2010.00211.x]
9. Elizalde-Bielsa A, Muñoz PM, Zúñiga-Ripa A, Conde-Álvarez R. A Review on the Methodology and Use of the Pregnant Mouse Model in the Study of Brucella Reproductive Pathogenesis and Its Abortifacient Effect. Microorganisms. 2024;12(5):866. [DOI:10.3390/microorganisms12050866]
10. Sabbaghian E, Roodbari F, Rafiei A, Amani J. In silico design of a multimeric polytope as a highly immunogenic DNA vaccine against human cytomegalovirus. Journal of Applied Biotechnology Reports. 2014;1(4):143-53.
11. Oyarzún P, Ellis JJ, Bodén M, Kobe B. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. BMC bioinformatics. 2013;14(1):1-11. [DOI:10.1186/1471-2105-14-52]
12. Du Z-Q, Li X, Wang J-Y. Immunogenicity analysis of a novel subunit vaccine candidate molecule-recombinant L7/L12 ribosomal protein of Brucella suis. Applied biochemistry and biotechnology. 2016;179:1445-55. [DOI:10.1007/s12010-016-2076-x]
13. Shang K, Zhu Y, Tian T, Shi H, Yin Z, He Y, et al. Development of a novel multi-epitope vaccine for brucellosis prevention. Heliyon. 2024;10(14). [DOI:10.1016/j.heliyon.2024.e34721]
14. Afley P, Dohre SK, Prasad G, Kumar S. Prediction of T cell epitopes of Brucella abortus and evaluation of their protective role in mice. Applied microbiology and biotechnology. 2015;99:7625-37. [DOI:10.1007/s00253-015-6787-7]
15. Cassataro J, Velikovsky CA, de la Barrera S, Estein SM, Bruno L, Bowden R, et al. A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. Infection and immunity. 2005;73(10):6537-46. [DOI:10.1128/IAI.73.10.6537-6546.2005]
16. Velikovsky CA, Cassataro J, Giambartolomei GH, Goldbaum FA, Estein S, Bowden RA, et al. A DNA vaccine encoding lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice. Infection and immunity. 2002;70(5):2507-11. [DOI:10.1128/IAI.70.5.2507-2511.2002]
17. Onate AA, Céspedes S, Cabrera A, Rivers R, González A, Munoz C, et al. A DNA vaccine encoding Cu, Zn superoxide dismutase of Brucella abortus induces protective immunity in BALB/c mice. Infection and immunity. 2003;71(9):4857-61. [DOI:10.1128/IAI.71.9.4857-4861.2003]
18. Jain S, Afley P, Dohre SK, Saxena N, Kumar S. Evaluation of immunogenicity and protective efficacy of a plasmid DNA vaccine encoding ribosomal protein L9 of Brucella abortus in BALB/c mice. Vaccine. 2014;32(35):4537-42. [DOI:10.1016/j.vaccine.2014.06.012]
19. Al-Mariri A, Abbady AQ. Evaluation of the immunogenicity and the protective efficacy in mice of a DNA vaccine encoding SP41 from Brucella melitensis. The Journal of Infection in Developing Countries. 2013;7(04):329-37. [DOI:10.3855/jidc.2296]
20. Yang X, Hudson M, Walters N, Bargatze RF, Pascual DW. Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infection and immunity. 2005;73(11):7297-303. [DOI:10.1128/IAI.73.11.7297-7303.2005]
21. Chen X, Zaro JL, Shen W-C. Fusion protein linkers: property, design and functionality. Advanced drug delivery reviews. 2013;65(10):1357-69. [DOI:10.1016/j.addr.2012.09.039]
22. Pasotti L, Zucca S. Advances and computational tools towards predictable design in biological engineering. Computational and mathematical methods in medicine. 2014;2014(1):369681. [DOI:10.1155/2014/369681]
23. Zaharieva N, Dimitrov I, Flower DR, Doytchinova I. VaxiJen dataset of bacterial immunogens: an update. Current computer-aided drug design. 2019;15(5):398-400. [DOI:10.2174/1573409915666190318121838]
24. Dimitrov I, Flower DR, Doytchinova I, editors. AllerTOP-a server for in silico prediction of allergens. BMC bioinformatics; 2013: BioMed Central. [DOI:10.1186/1471-2105-14-S6-S4]
25. Kouza M, Faraggi E, Kolinski A, Kloczkowski A. The GOR method of protein secondary structure prediction and its application as a protein aggregation prediction tool. Prediction of protein secondary structure. 2017:7-24. [DOI:10.1007/978-1-4939-6406-2_2]
26. Kloczkowski A, Ting K-L, Jernigan R, Garnier J. Protein secondary structure prediction based on the GOR algorithm incorporating multiple sequence alignment information. Polymer. 2002;43(2):441-9. [DOI:10.1016/S0032-3861(01)00425-6]
27. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research. 2014;42(W1):W252-W8. [DOI:10.1093/nar/gku340]
28. LASKOWSKI RA, FURNHAM N, THORNTON JM. The Ramachandran plot and protein structure validation. Biomolecular forms and functions: a celebration of 50 years of the ramachandran map: World Scientific; 2013. p. 62-75. [DOI:10.1142/9789814449144_0005]
29. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research. 2007;35(suppl_2):W407-W10. [DOI:10.1093/nar/gkm290]
30. Forghanifard MM, Amani J, Gheybi E, Abbaszadegan MR. In silico analysis of chimeric polytope of cancer/testis antigens for dendritic cell-based immune-gene therapy applications. Gene Ther Mol Biol. 2012;14:87-96.
31. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research. 2003;31(13):3406-15. [DOI:10.1093/nar/gkg595]
32. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic acids research. 2012;40(W1):W525-W30. [DOI:10.1093/nar/gks438]
33. Saha S, Raghava GPS. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics. 2006;65(1):40-8. [DOI:10.1002/prot.21078]
34. Ponomarenko J, Bui H-H, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC bioinformatics. 2008;9:1-8. [DOI:10.1186/1471-2105-9-514]
35. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. Journal of biomedical informatics. 2015;53:405-14. [DOI:10.1016/j.jbi.2014.11.003]
36. Heilig J, Elbing KL, Brent R. Large‐scale preparation of plasmid DNA. Current protocols in molecular biology. 1998;41(1):1.7. 1-.7. 16. [DOI:10.1002/0471142727.mb0107s41]
37. Golshani M, Rafati S, Dashti A, Gholami E, Siadat SD, Oloomi M, et al. Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice. Molecular immunology. 2015;65(2):287-92. [DOI:10.1016/j.molimm.2015.01.009]
38. Dadar M, Tiwari R, Sharun K, Dhama K. Importance of brucellosis control programs of livestock on the improvement of one health. Veterinary Quarterly. 2021;41(1):137-51. [DOI:10.1080/01652176.2021.1894501]
39. Tarrahimofrad H, Zamani J, Hamblin MR, Darvish M, Mirzaei H. A designed peptide-based vaccine to combat Brucella melitensis, B. suis and B. abortus: Harnessing an epitope mapping and immunoinformatics approach. Biomedicine & Pharmacotherapy. 2022;155:113557. [DOI:10.1016/j.biopha.2022.113557]
40. Kozak M. The scanning model for translation: an update. The Journal of cell biology. 1989;108(2):229-41. [DOI:10.1083/jcb.108.2.229]
41. Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic acids research. 2015;43(W1):W174-W81. [DOI:10.1093/nar/gkv342]
42. Yang J, Zhang Y. Protein structure and function prediction using I‐TASSER. Current protocols in bioinformatics. 2015;52(1):5.8. 1-5.8. 15. [DOI:10.1002/0471250953.bi0508s52]
43. Chen P, Rayner S, Hu K-h. Advances of bioinformatics tools applied in virus epitopes prediction. Virologica sinica. 2011;26:1-7. [DOI:10.1007/s12250-011-3159-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb