1. Guo X, Zeng H, Li M, Xiao Y, Gu G, Song Z, et al. The mechanism of chronic intracellular infection with Brucella spp. Frontiers in cellular and infection microbiology. 2023;13:1129172. [
DOI:10.3389/fcimb.2023.1129172]
2. Pappas G. The changing Brucella ecology: novel reservoirs, new threats. International journal of antimicrobial agents. 2010;36:S8-S11. [
DOI:10.1016/j.ijantimicag.2010.06.013]
3. Khurana SK, Sehrawat A, Tiwari R, Prasad M, Gulati B, Shabbir MZ, et al. Bovine brucellosis-a comprehensive review. Veterinary Quarterly. 2021;41(1):61-88. [
DOI:10.1080/01652176.2020.1868616]
4. Corbel MJ. Brucellosis: an overview. Emerging infectious diseases. 1997;3(2):213. [
DOI:10.3201/eid0302.970219]
5. N Xavier M, A Paixao T, B den Hartigh A, M Tsolis R, L Santos R. Pathogenesis of Brucella spp. The open veterinary science journal. 2010;4(1). [
DOI:10.2174/1874318801004010109]
6. Sung KY, Jung M, Shin M-K, Park H-E, Lee JJ, Kim S, et al. Induction of immune responses by two recombinant proteins of brucella abortus, outer membrane proteins 2b porin and Cu/Zn superoxide dismutase, in mouse model. Journal of Microbiology and Biotechnology. 2014;24(6):854-61. [
DOI:10.4014/jmb.1312.12063]
7. Meletis E, Sakhaee E, Kostoulas P. Bayesian true prevalence estimation of brucellosis in sheep, goats, cattle and camels in southeast regions of Iran. Zoonoses and Public Health. 2024;71(2):170-7. [
DOI:10.1111/zph.13095]
8. Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS microbiology reviews. 2010;34(3):379-94. [
DOI:10.1111/j.1574-6976.2010.00211.x]
9. Elizalde-Bielsa A, Muñoz PM, Zúñiga-Ripa A, Conde-Álvarez R. A Review on the Methodology and Use of the Pregnant Mouse Model in the Study of Brucella Reproductive Pathogenesis and Its Abortifacient Effect. Microorganisms. 2024;12(5):866. [
DOI:10.3390/microorganisms12050866]
10. Sabbaghian E, Roodbari F, Rafiei A, Amani J. In silico design of a multimeric polytope as a highly immunogenic DNA vaccine against human cytomegalovirus. Journal of Applied Biotechnology Reports. 2014;1(4):143-53.
11. Oyarzún P, Ellis JJ, Bodén M, Kobe B. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. BMC bioinformatics. 2013;14(1):1-11. [
DOI:10.1186/1471-2105-14-52]
12. Du Z-Q, Li X, Wang J-Y. Immunogenicity analysis of a novel subunit vaccine candidate molecule-recombinant L7/L12 ribosomal protein of Brucella suis. Applied biochemistry and biotechnology. 2016;179:1445-55. [
DOI:10.1007/s12010-016-2076-x]
13. Shang K, Zhu Y, Tian T, Shi H, Yin Z, He Y, et al. Development of a novel multi-epitope vaccine for brucellosis prevention. Heliyon. 2024;10(14). [
DOI:10.1016/j.heliyon.2024.e34721]
14. Afley P, Dohre SK, Prasad G, Kumar S. Prediction of T cell epitopes of Brucella abortus and evaluation of their protective role in mice. Applied microbiology and biotechnology. 2015;99:7625-37. [
DOI:10.1007/s00253-015-6787-7]
15. Cassataro J, Velikovsky CA, de la Barrera S, Estein SM, Bruno L, Bowden R, et al. A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. Infection and immunity. 2005;73(10):6537-46. [
DOI:10.1128/IAI.73.10.6537-6546.2005]
16. Velikovsky CA, Cassataro J, Giambartolomei GH, Goldbaum FA, Estein S, Bowden RA, et al. A DNA vaccine encoding lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice. Infection and immunity. 2002;70(5):2507-11. [
DOI:10.1128/IAI.70.5.2507-2511.2002]
17. Onate AA, Céspedes S, Cabrera A, Rivers R, González A, Munoz C, et al. A DNA vaccine encoding Cu, Zn superoxide dismutase of Brucella abortus induces protective immunity in BALB/c mice. Infection and immunity. 2003;71(9):4857-61. [
DOI:10.1128/IAI.71.9.4857-4861.2003]
18. Jain S, Afley P, Dohre SK, Saxena N, Kumar S. Evaluation of immunogenicity and protective efficacy of a plasmid DNA vaccine encoding ribosomal protein L9 of Brucella abortus in BALB/c mice. Vaccine. 2014;32(35):4537-42. [
DOI:10.1016/j.vaccine.2014.06.012]
19. Al-Mariri A, Abbady AQ. Evaluation of the immunogenicity and the protective efficacy in mice of a DNA vaccine encoding SP41 from Brucella melitensis. The Journal of Infection in Developing Countries. 2013;7(04):329-37. [
DOI:10.3855/jidc.2296]
20. Yang X, Hudson M, Walters N, Bargatze RF, Pascual DW. Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infection and immunity. 2005;73(11):7297-303. [
DOI:10.1128/IAI.73.11.7297-7303.2005]
21. Chen X, Zaro JL, Shen W-C. Fusion protein linkers: property, design and functionality. Advanced drug delivery reviews. 2013;65(10):1357-69. [
DOI:10.1016/j.addr.2012.09.039]
22. Pasotti L, Zucca S. Advances and computational tools towards predictable design in biological engineering. Computational and mathematical methods in medicine. 2014;2014(1):369681. [
DOI:10.1155/2014/369681]
23. Zaharieva N, Dimitrov I, Flower DR, Doytchinova I. VaxiJen dataset of bacterial immunogens: an update. Current computer-aided drug design. 2019;15(5):398-400. [
DOI:10.2174/1573409915666190318121838]
24. Dimitrov I, Flower DR, Doytchinova I, editors. AllerTOP-a server for in silico prediction of allergens. BMC bioinformatics; 2013: BioMed Central. [
DOI:10.1186/1471-2105-14-S6-S4]
25. Kouza M, Faraggi E, Kolinski A, Kloczkowski A. The GOR method of protein secondary structure prediction and its application as a protein aggregation prediction tool. Prediction of protein secondary structure. 2017:7-24. [
DOI:10.1007/978-1-4939-6406-2_2]
26. Kloczkowski A, Ting K-L, Jernigan R, Garnier J. Protein secondary structure prediction based on the GOR algorithm incorporating multiple sequence alignment information. Polymer. 2002;43(2):441-9. [
DOI:10.1016/S0032-3861(01)00425-6]
27. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research. 2014;42(W1):W252-W8. [
DOI:10.1093/nar/gku340]
28. LASKOWSKI RA, FURNHAM N, THORNTON JM. The Ramachandran plot and protein structure validation. Biomolecular forms and functions: a celebration of 50 years of the ramachandran map: World Scientific; 2013. p. 62-75. [
DOI:10.1142/9789814449144_0005]
29. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research. 2007;35(suppl_2):W407-W10. [
DOI:10.1093/nar/gkm290]
30. Forghanifard MM, Amani J, Gheybi E, Abbaszadegan MR. In silico analysis of chimeric polytope of cancer/testis antigens for dendritic cell-based immune-gene therapy applications. Gene Ther Mol Biol. 2012;14:87-96.
31. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research. 2003;31(13):3406-15. [
DOI:10.1093/nar/gkg595]
32. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic acids research. 2012;40(W1):W525-W30. [
DOI:10.1093/nar/gks438]
33. Saha S, Raghava GPS. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics. 2006;65(1):40-8. [
DOI:10.1002/prot.21078]
34. Ponomarenko J, Bui H-H, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC bioinformatics. 2008;9:1-8. [
DOI:10.1186/1471-2105-9-514]
35. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. Journal of biomedical informatics. 2015;53:405-14. [
DOI:10.1016/j.jbi.2014.11.003]
36. Heilig J, Elbing KL, Brent R. Large‐scale preparation of plasmid DNA. Current protocols in molecular biology. 1998;41(1):1.7. 1-.7. 16. [
DOI:10.1002/0471142727.mb0107s41]
37. Golshani M, Rafati S, Dashti A, Gholami E, Siadat SD, Oloomi M, et al. Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice. Molecular immunology. 2015;65(2):287-92. [
DOI:10.1016/j.molimm.2015.01.009]
38. Dadar M, Tiwari R, Sharun K, Dhama K. Importance of brucellosis control programs of livestock on the improvement of one health. Veterinary Quarterly. 2021;41(1):137-51. [
DOI:10.1080/01652176.2021.1894501]
39. Tarrahimofrad H, Zamani J, Hamblin MR, Darvish M, Mirzaei H. A designed peptide-based vaccine to combat Brucella melitensis, B. suis and B. abortus: Harnessing an epitope mapping and immunoinformatics approach. Biomedicine & Pharmacotherapy. 2022;155:113557. [
DOI:10.1016/j.biopha.2022.113557]
40. Kozak M. The scanning model for translation: an update. The Journal of cell biology. 1989;108(2):229-41. [
DOI:10.1083/jcb.108.2.229]
41. Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic acids research. 2015;43(W1):W174-W81. [
DOI:10.1093/nar/gkv342]
42. Yang J, Zhang Y. Protein structure and function prediction using I‐TASSER. Current protocols in bioinformatics. 2015;52(1):5.8. 1-5.8. 15. [
DOI:10.1002/0471250953.bi0508s52]
43. Chen P, Rayner S, Hu K-h. Advances of bioinformatics tools applied in virus epitopes prediction. Virologica sinica. 2011;26:1-7. [
DOI:10.1007/s12250-011-3159-4]