Volume 29, Issue 1 And 2 (1-2025)                   IBJ 2025, 29(1 And 2): 57-67 | Back to browse issues page

Ethics code: IR.SUMS.REC.1398.1258


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini A, Moein M, Sabahi* Z, Moein S, Hafez Ghoran S, Naderian M et al . Antioxidant Potentials, Protease Inhibitory, and Cytotoxic Activities of Various Isolated Extracts from Salvia aegyptiaca. IBJ 2025; 29 (1 and 2) :57-67
URL: http://ibj.pasteur.ac.ir/article-1-4567-en.html
Abstract:  
Background: Natural compounds can regulate the growth and progression of cancer cells with low toxicity to normal cell; therefore, these compounds are unique targets for cancer treatment. Recently, extracts from Salvia species have shown promising antiproliferative potential. This study aimed to isolate and characterize bioactive compounds from Salvia aegyptiaca and evaluate their antioxidant, cytotoxic, and protease-inhibitory activities.
Methods: In this study, various extracts of S. aegyptiaca were prepared, and several compounds, including ursolic acid, oleanolic acid, luteolin-7-O-glucoside, quercetin-3-O-rutoside, and rosmarinic acid, were isolated and characterized using different spectroscopic methods. Finally, the antioxidant activity, protease inhibitory activity, and cytotoxicity of the crude extract, multiple fractions, and isolated compounds were examined.
Results: According to the results obtained, rosmarinic acid demonstrated the highest antioxidant performance, as indicated by the following assays: DPPH (IC50: 28.39 ± 0.75 µg/mL), ABTS (39.52 ± 0.72 µg/mL), FRAP (31.87 ± 0.67 µg/mL), NO scavenging (71.44 ± 1.04 µg/mL), and ORAC values (0.6 TE/mg). Furthermore, both cynaroside and rosmarinic acid exhibited the most potent antiproliferative effects against the Hep G2 cell line, with IC50  value of 34.4 ± 2.34 and 47.84 ± 5.87 µg/mL, respectively. The EtOAc fraction and rosmarinic acid also showed higher protease inhibitory activity, with IC50 of 17.6 ± 0.10 and 17.0 ± 0.30 µg/mL, respectively, as compared to other compounds.
Conclusion: Our findings suggest that the identified compounds may be responsible for the antiproliferative effects of S. aegyptiaca. Overall, S. aegyptiaca could serve as a valuable natural antioxidant and anticancer agent in both pharmaceutical and food industries.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Sevgi E, Dag A, Kızılarslan-Hançer Ç, Atasoy S, Kurt BZ, Aksakal Ö. Evaluation of cytotoxic and antioxidant potential of Dittrichia viscosa (L.) Greuter used in traditional medicine. J Ethnopharmacol. 2021;276:114211. [DOI:10.1016/j.jep.2021.114211]
2. Majolo F, Delwing LKdOB, Marmitt DJ, Bustamante-Filho IC, Goettert MI. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem Lett. 2019;31:196-207. [DOI:10.1016/j.phytol.2019.04.003]
3. Shu PH, Zhang H, Li NC, Zhang JL, Liu GW, Yang Y, et al. Natural tyrosinase inhibitors from Betula platyphylla barks. Holzforschung. 2022;76(7):674-8. [DOI:10.1515/hf-2022-0016]
4. Ghoran SH, Firuzi O, Asadollahi M, Stuppner H, Alilou M, Jassbi AR. Dammarane-type triterpenoid saponins from Salvia russellii Benth. Phytochemistry. 2021;184:112653. [DOI:10.1016/j.phytochem.2020.112653]
5. Flores Y, Díaz C, Garay F, Colque O, Sterner O, Almanza GR. Oleanane-type triterpenes and derivatives from seed coat of Bolivian Chenopodium quinoa genotype "salar". Rev Boliv Quím. 2005;22(1):71-7.
6. Chiruvella KK, Mohammed A, Dampuri G, Ghanta RG, Raghavan SC. Phytochemical and antimicrobial studies of methyl angolensate and luteolin-7-O-glucoside isolated from callus cultures of Soymida febrifuga. Int J Biomed Sci. 2007;3(4):269-78. [DOI:10.59566/IJBS.2007.3269]
7. Ghoran SH, Firuzi O, Jassbi AR. Phytoconstituents from the aerial parts of Salvia dracocephaloides Boiss. and their biological activities. J Environ Treat Tech. 2020;8(4):1274-8. [DOI:10.47277/JETT/8(4)1278]
8. Couto JF, Simas DL, Silva MV, Barth T, Pinto SC, Tinoco LW, et al. HSCCC separations of rutin esters obtained by enzymatic reaction catalyzed by lipase. J Braz Chem Soc. 2021;32(3):523-33. [DOI:10.21577/0103-5053.20200206]
9. Wang Y, Tang J, Zhu H, Jiang X, Liu J, Xu W, et al. Aqueous extract of Rabdosia rubescens leaves: forming nanoparticles, targeting P-selectin, and inhibiting thrombosis. Int J Nanomedicine. 2015;10:6905-18. [DOI:10.2147/IJN.S91316]
10. Jaffri JM. Reactive oxygen species and antioxidant system in selected skin disorders. The Malaysian journal of medical sciences: Malays J Med Sci. 2023;30(1):7-20. [DOI:10.21315/mjms2023.30.1.2]
11. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-574. [DOI:10.1007/s00204-023-03562-9]
12. Luca SV, Skalicka-Woźniak K, Mihai CT, Gradinaru AC, Mandici A, Ciocarlan N, et al. Chemical profile and bioactivity evaluation of salvia species from Eastern Europe. Antioxidants. 2023;12(8):1514. [DOI:10.3390/antiox12081514]
13. Godlewska-Żyłkiewicz B, Świsłocka R, Kalinowska M, Golonko A, Świderski G, Arciszewska Ż, et al. Biologically active compounds of plants: Structure-related antioxidant, microbiological and cytotoxic activity of selected carboxylic acids. Materials. 2020;13(19):4454. [DOI:10.3390/ma13194454]
14. Lopez-Corona AV, Valencia-Espinosa I, González-Sánchez FA, Sánchez-López AL, Garcia-Amezquita LE, Garcia-Varela R. Antioxidant, anti-inflammatory and cytotoxic activity of phenolic compound family extracted from Raspberries (Rubus idaeus): A general review. Antioxidants. 2022;11(6):1192. [DOI:10.3390/antiox11061192]
15. Ng ZX, Koick YTT, Yong PH. Comparative analyses on radical scavenging and cytotoxic activity of phenolic and flavonoid content from selected medicinal plants. Nat Prod Res. 2021;35(23):5271-6. [DOI:10.1080/14786419.2020.1749617]
16. Al Aboody MS. Cytotoxic, antioxidant, and antimicrobial activities of Celery (Apium graveolens L.). Bioinformation. 2021;17(1):147-56. [DOI:10.6026/97320630017147]
17. Ahmed NN, Al-Touby SSJ, Alrashdi YBA, Hossain MA. Isolation and characterization of cytotoxic and antioxidant biomarkers from the aerial parts of Suaeda aegyptica. Adv Biomark Sci Technol. 2024;6(1):1-7. [DOI:10.1016/j.abst.2024.01.001]
18. Singh G, Passsari AK, Leo VV, Mishra VK, Subbarayan S, Singh BP, et al. Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from India. Front Plant Sci. 2016;7:407. [DOI:10.3389/fpls.2016.00407]
19. Adebayo SA, Ondua M, Shai L, Lebelo S. Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants. J Inflamm Res. 2019;12:195-203. [DOI:10.2147/JIR.S199377]
20. Honzel D, Carter SG, Redman KA, Schauss AG, Endres JR, Jensen GS. Comparison of chemical and cell-based antioxidant methods for evaluation of foods and natural products: generating multifaceted data by parallel testing using erythrocytes and polymorphonuclear cells. J Agric Food Chem. 2008;56(18):8319-25. [DOI:10.1021/jf800401d]
21. Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, et al. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed Pharmacother. 2022;150:113054. [DOI:10.1016/j.biopha.2022.113054]
22. Ben Farhat M, Sotomayor JA, Jordán MJ. Antioxidants of Salvia aegyptiaca L. residues depending on geographical origin. Biocatal Agric Biotechnol. 2019;1:17. [DOI:10.1016/j.bcab.2019.01.001]
23. Kamah F, Basli A, Erenler R, Bouzana A, Bensouici C, Richard T, et al. Phenolic compounds and biological activities of grape (Vitis vinifera L.) seeds at different ripening stages: insights from Algerian varieties. Arq Bras Med Vet Zootec. 2025;77(1):13361. [DOI:10.1590/1678-4162-13361]
24. Kakali B. Natural compounds as protease inhibitors in therapeutic focus on cancer therapy. Anticancer Agents Med Chem.2024;24(16):1167-81. [DOI:10.2174/0118715206303964240708095110]
25. Chen C, Liu Y, Shen Y, Zhu L, Yao L, Wang X, et al. Rosmarinic acid, the active component of Rubi Fructus, induces apoptosis of SGC-7901 and HepG2 cells through mitochondrial pathway and exerts anti-tumor effect. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(12):3743-55. [DOI:10.1007/s00210-023-02552-z]
26. Ji J, Wang Z, Sun W, Li Z, Cai H, Zhao E, et al. Effects of cynaroside on cell proliferation, apoptosis, migration and invasion though the MET/AKT/mTOR axis in gastric cancer. Int J Mol Sci. 2021;22(22):12125. [DOI:10.3390/ijms222212125]
27. Sun S, Yu W, Zhang G, Li X, Song L, Lv Y, et al. Potential mechanism of traditional Chinese medicine intervention in gastric cancer: targeted regulation of autophagy. Front Pharmacol. 2025;16:1548672. [DOI:10.3389/fphar.2025.1548672]
28. ben Sghaier M, Pagano A, Mousslim M, Ammari Y, Kovacic H, Luis J. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomed Pharmacother. 2016;84:1972-8. [DOI:10.1016/j.biopha.2016.11.001]
29. Shah S, Narang R, Singh VJ, Pilli G, Nayak SK. A review on anticancer profile of flavonoids: Sources, chemistry, mechanisms, structure-activity relationship and anticancer activity. Curr Drug Res Rev. 2023;15(2):122-48. [DOI:10.2174/2589977515666230120144852]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb