Volume 29, Issue 1 And 2 (1-2025)                   IBJ 2025, 29(1 And 2): 20-35 | Back to browse issues page

Ethics code: IR.AJUMS.MEDICINE.REC. 1400.010


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shamsi M, Babaahmadi-Rezaei H, Khedri A, Hatami M, Rashidi M. A Novel Approach to Overcome Cisplatin Resistance in Ovarian Cancer: Revealing the Synergistic Potential of Quercetin-Loaded Solid Lipid Nanoparticles. IBJ 2025; 29 (1 and 2) :20-35
URL: http://ibj.pasteur.ac.ir/article-1-4543-en.html
Abstract:  
Background: Ovarian cancer remains the leading cause of mortality among gynecological cancers, mainly because of resistance to platinum-based chemotherapy, particularly cisplatin. This study investigated the potential of QU-loaded SLNs to address cisplatin resistance in OC cells.
Methods: The efficacy of QU-SLN was assessed in vitro on the cisplatin-resistant SK-OV-3 and cisplatin-sensitive A2780s human OC cell lines. Various assays, including cytotoxicity, cell viability, clonogenicity, flow cytometry, quantitative RT-PCR, and wound healing assays, evaluated the combined effects of QU and QU-SLN with cisplatin on cell viability, apoptosis, gene expression levels related to cisplatin resistance, and cell migration.
Results: Combining QU-SLN with cisplatin resulted in significantly reduced cell viability and colony formation, accompanied by increased apoptotic rates compared to each treatment alone. Moreover, there was a notable reduction in the expression level of genes associated with cisplatin resistance, particularly ABCG2, MT-2A, GST-pi, and XIAP, in the combined treatment. Wound healing assays indicated that the QU-SLN and cisplatin combination severely impaired OC cell motility compared to cisplatin monotherapy.
Conclusion: QU-SLN and cisplatin combination enhances the therapeutic response in cisplatin-resistant OC cells. By reducing cell proliferation, promoting apoptosis, and downregulating drug resistance genes, QU-SLN might present a promising strategy to improve treatment outcomes for OC patients resistant to cisplatin.
 

 
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, et al. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale. 2012;4(22):7021-30. [DOI:10.1039/c2nr32181e]
2. Gupta S, Pathak Y, Gupta MK, Vyas SP. Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted. Artif Cells Nanomed Biotechnol. 2019;47(1):4066-88. [DOI:10.1080/21691401.2019.1677680]
3. Hascicek C, Gun O. Nano drug delivery systems for ovarian cancer therapy. Integr Cancer Sci Ther. 2017;4:1-4. [DOI:10.15761/ICST.1000235]
4. Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health. 2019:287-99. [DOI:10.2147/IJWH.S197604]
5. Sheffield BS, Hwang HC, Lee AF, Thompson K, Rodriguez S, H Tse C, et al. BAP1 immunohistochemistry and p16 FISH to separate benign from malignant mesothelial proliferations. Am J Surg Pathol. 2015;39(7):977-82. [DOI:10.1097/PAS.0000000000000394]
6. Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, et al. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;277:121110. [DOI:10.1016/j.biomaterials.2021.121110]
7. Chen Y, Bieber MM, Teng NN. Hedgehog signaling regulates drug sensitivity by targeting ABC transporters ABCB1 and ABCG2 in epithelial ovarian cancer. Mol Carcinog. 2014;53(8):625-34. [DOI:10.1002/mc.22015]
8. Shaw TJ, Lacasse EC, Durkin JP, Vanderhyden BC. Downregulation of XIAP expression in ovarian cancer cells induces cell death in vitro and in vivo. Int J Cancer. 2008;122(6):1430-4. [DOI:10.1002/ijc.23278]
9. Xie Y, Long Q, Wu Q, Shi S, Dai M, Liu Y, et al. Improving therapeutic effect in ovarian peritoneal carcinomatosis with honokiol nanoparticles in a thermosensitive hydrogel composite. Rsc Adv. 2012;2:7759-71 [DOI:10.1039/c2ra20612a]
10. Bahari LAS, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull. 2016;6(2):143-51. [DOI:10.15171/apb.2016.021]
11. Niazvand F, Orazizadeh M, Khorsandi L, Abbaspour M, Mansouri E, Khodadadi A. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina. 2019;55(4):114. [DOI:10.3390/medicina55040114]
12. Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):191. [DOI:10.3390/pharmaceutics10040191]
13. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288-303. [DOI:10.4103/1735-5362.235156]
14. Vijayakumar A, Baskaran R, Jang YS, Oh SH, Yoo BK. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS Pharm Sci Tech. 2017;18(3):875-83. [DOI:10.1208/s12249-016-0573-4]
15. Qiu C, Zhang Z, Li X, Sang S, McClements DJ, Chen L, et al. Co-encapsulation of curcumin and quercetin with zein/HP-β-CD conjugates to enhance environmental resistance and antioxidant activity. NPJ Sci Food. 2023;7(1):29. [DOI:10.1038/s41538-023-00186-2]
16. Akanda M, Mithu MSH, Douroumis D. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. J Drug Deliv Sci Technol. 2023;86(4):1-14. [DOI:10.1016/j.jddst.2023.104709]
17. Jagdale S, Narwade M, Sheikh A, Md S, Salve R, Gajbhiye V, et al. GLUT1 transporter-facilitated solid lipid nanoparticles loaded with anti-cancer therapeutics for ovarian cancer targeting. Int J Pharm. 2023;637:122894. [DOI:10.1016/j.ijpharm.2023.122894]
18. Raut ID, Doijad RC, Mohite SK, Manjappa AS. Preparation and characterization of solid lipid nanoparticles loaded with cisplatin. J Drug Deliv Therapeut. 2018;8(6):125-31. [DOI:10.22270/jddt.v8i6.2033]
19. Wu Y, Yang Y, Lv X, Gao M, Gong X, Yao Q, et al. Nanoparticle-based combination therapy for ovarian cancer. Int J Nanomedicine. 2023;18:1965-87. [DOI:10.2147/IJN.S394383]
20. Lu J, Sun D, Gao S, Gao Y, Ye J, Liu P. Cyclovirobuxine D induces autophagy-associated cell death via the Akt/mTOR pathway in MCF-7 human breast cancer cells. J Pharmacol Sci. 2014;125(1):74-82. [DOI:10.1254/jphs.14013FP]
21. Niazvand F, Khorsandi LS, Absalan F, Ashtari A. Effect of quercetin solid lipid nanoparticles on autophagy and Atg5 protein expression levels in human breast cancer cell line (MCF-7). Yafteh. 2020;22(2):144-59.
22. Talei N, Daneshmand F, Mirhoseini M, Majdizadeh M, Haghiralsadat BF. Fabrication and characterization of physicochemical niosomal nanocarriers containing quercetin flavonoids for therapeutic purposes. 2020;15(1):32-40.
23. Lu B, Huang Y, Chen Z, Ye J, Xu H, Chen W, et al. Niosomal nanocarriers for enhanced skin delivery of quercetin with functions of anti-tyrosinase and antioxidant. Molecules. 2019;24(12):2322. [DOI:10.3390/molecules24122322]
24. Zamble DB. The responses of cellular proteins to cisplatin-damaged DNA. MIT Libraries. 1999:73344. [DOI:10.1002/9783906390420.ch3]
25. Nagai N, Okuda R, Kinoshita M, Ogata H. Decomposition kinetics of cisplatin in human biological fluids. J Pharm Pharmacol. 1996;48(9):918-24. [DOI:10.1111/j.2042-7158.1996.tb06002.x]
26. Li X, Ling V, Li PC. Same-single-cell analysis for the study of drug efflux modulation of multidrug resistant cells using a microfluidic chip. Anal Chem. 2008;80(11):4095-102. [DOI:10.1021/ac800231k]
27. Petrović M, Todorović D. Biochemical and molecular mechanisms of action of cisplatin in cancer cells. Med Biol. 2016;18(1):12-18.
28. Nessa MU, Beale P, Chan C, Yu JQ, Huq F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011;31(11):3789-97.
29. Catanzaro D, Ragazzi E, Vianello C, Caparrotta L, Montopoli M. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines. Nat Prod Commun. 2015;10(8):1365-8. [DOI:10.1177/1934578X1501000813]
30. Lu J, Zhang L, Xie F, Zhu L, Li X, Ouyang J, et al. Mild oxidative stress induced by a low dose of cisplatin contributes to the escape of TRAIL-mediated apoptosis in the ovarian cancer SKOV3 cell line. Oncol Rep. 2016;35(6):3427-34. [DOI:10.3892/or.2016.4702]
31. Yi L, Zongyuan Y, Cheng G, Lingyun Z, GuiLian Y, Wei G. Quercetin enhances apoptotic effect of tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer‐binding protein homologous protein (CHOP)‐death receptor 5 pathway. Cancer Sci. 2014;105(5):520-7. [DOI:10.1111/cas.12395]
32. Ren M-X, Deng X-H, Ai F, Yuan G-Y, Song H-Y. Effect of quercetin on the proliferation of the human ovarian cancer cell line SKOV-3 in vitro. Exp Ther Med. 2015;10(2):579-83. [DOI:10.3892/etm.2015.2536]
33. Zhou J, Gong J, Ding C, Chen G. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA‑145. Mol Med Rep. 2015;12(2):3127-31. [DOI:10.3892/mmr.2015.3679]
34. Scambia G, Ranelletti F, Panici PB, Piantelli M, Bonanno G, De Vincenzo R, et al. Inhibitory effect of quercetin on primary ovarian and endometrial cancers and synergistic activity with cis-diamminedichloroplatinum (II). Gynecol Oncol. 1992;45(1):13-9. [DOI:10.1016/0090-8258(92)90484-Z]
35. Gordon JL, Brown MA, Reynolds MM. Cell-based methods for determination of efficacy for candidate therapeutics in the clinical management of cancer. Diseases. 2018;6(4):85. [DOI:10.3390/diseases6040085]
36. Li X, Guo S, Xiong X-K, Peng B-Y, Huang J-M, Chen M-F, et al. Combination of quercetin and cisplatin enhances apoptosis in OSCC cells by downregulating xIAP through the NF-κB pathway. J Cancer. 2019;10(19):4509-21. [DOI:10.7150/jca.31045]
37. Van Zanden JJ, Hamman OB, Van Iersel ML, Boeren S, Cnubben NH, Bello ML, et al. Inhibition of human glutathione S-transferase P1-1 by the flavonoid quercetin. Chem Biol Interact. 2003;145(2):139-48. [DOI:10.1016/S0009-2797(02)00250-8]
38. Surowiak P, Materna V, Kaplenko I, Spaczyński M, Dietel M, Lage H, et al. Augmented expression of metallothionein and glutathione S-transferase pi as unfavourable prognostic factors in cisplatin-treated ovarian cancer patients. Virchows Arch. 2005;447(3):626-33. [DOI:10.1007/s00428-005-1228-0]
39. Yang Y-I, Lee K-T, Park H-J, Kim TJ, Choi YS, Shih I-M, et al. Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway. Carcinogenesis. 2012;33(12):2488-98.. [DOI:10.1093/carcin/bgs302]
40. Miyamoto M, Takano M, Iwaya K, Shinomiya N, Kato M, Aoyama T, et al. X-chromosome-linked inhibitor of apoptosis as a key factor for chemoresistance in clear cell carcinoma of the ovary. Br J Cancer. 2014;110(12):2881-6. [DOI:10.1038/bjc.2014.255]
41. Dhanaraj T, Mohan M, Arunakaran J. Quercetin attenuates metastatic ability of human metastatic ovarian cancer cells via modulating multiple signaling molecules involved in cell survival, proliferation, migration and adhesion. Arch Biochem Biophys. 2021;701:108795. [DOI:10.1016/j.abb.2021.108795]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb