Volume 28, Issue 5 And 6 (9-2024)                   IBJ 2024, 28(5 And 6): 221-234 | Back to browse issues page

Ethics code: IR.PII.REC.1401.047


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maali A, Noei A, Feghhi-Najafabadi S, Sharifzadeh Z. A Systematic Review on the Dual Role of Interleukin-1 in CAR T-Cell Therapy: Enhancer and Mitigator. IBJ 2024; 28 (5 and 6) :221-234
URL: http://ibj.pasteur.ac.ir/article-1-4444-en.html
Abstract:  
Chimeric antigen receptor (CAR) T-cell therapy is a groundbreaking approach for treating certain hematologic malignancies and solid tumors. However, its application is limited by severe toxicities, particularly cytokine release syndrome (CRS) and cell-associated neurotoxicity syndrome (ICANS), dramatically limit its broader application. IL-1 plays a crucial role in both enhancing CAR T-cell efficacy and driving these toxic effects. This review systematically examines the dual functions of IL-1, highlighting its role in promoting CAR T-cell activation and persistence while contributing to CRS and ICANS pathogenesis. Strategies to mitigate IL-1-driven toxicities, including IL-1 receptor antagonists, monoclonal antibodies, IL-1 trapping, and interference with IL-1 production, show promise in reducing adverse effects without compromising therapeutic efficacy. Understanding the complex role of IL-1 in CAR T-cell therapy may lead to optimized treatment strategies, improving safety and expanding clinical applicability. Further research is essential to refine IL-1-targeted interventions and enhance the therapeutic potential of CAR T-cell therapy.
 

References
1. Vanegas YM, Mohty R, Gadd ME, Luo Y, Aljurf M, Qin H, et al. CAR-T cell therapies for B-cell lymphoid malignancies: identifying targets beyond CD19. Hematol Oncol Stem Cell Ther. 2022;15(3):81-93. [DOI:10.56875/2589-0646.1026]
2. Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR, et al. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett. 2013;334(2):237-44. [DOI:10.1016/j.canlet.2012.08.010]
3. Azad M, Bakhshi Biniaz R, Goudarzi M, Mobarra N, Alizadeh Sh, Nasiri H, et al. Short view of leukemia diagnosis and treatment in iran. Int J Hematol Oncol Stem Cell Res. 2015;9(2):88-94.
4. Maali Ah, Maroufi F, Sadeghi F, Atashi A, Kouchaki R, Moghadami M, et al. Induced pluripotent stem cell technology: trends in molecular biology, from genetics to epigenetics. Epigenomics. 2021;13(8):631-47. [DOI:10.2217/epi-2020-0409]
5. Maali Ah, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori Sh, et al. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol. 2023;14:1012841. [DOI:10.3389/fimmu.2023.1012841]
6. Hajari Taheri F, Hassani M, Sharifzadeh Z, Behdani M, Arashkia A, Abolhassani M. T cell engineered with a novel nanobody-based chimeric antigen receptor against VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life. 2019;71(9):1259-67. [DOI:10.1002/iub.2019]
7. Sahmani M, Vatanmakanian M, Goudarzi M, Mobarra N, Azad M. Microchips and their significance in isolation of circulating tumor cells and monitoring of cancers. Asian Pac J Cancer Prev. 2016;17(3):879-94. [DOI:10.7314/APJCP.2016.17.3.879]
8. Gumber D, Wang LD. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine. 2022;77:103941. [DOI:10.1016/j.ebiom.2022.103941]
9. Ayala Ceja M, Khericha M, Harris CM, Puig-Saus C, Chen YY. CAR-T cell manufacturing: Major process parameters and next-generation strategies. J Exp Med. 2024;221(2):e20230903. [DOI:10.1084/jem.20230903]
10. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731-8. [DOI:10.1038/s41591-018-0041-7]
11. Jain MD, Smith M, Shah NN. How I treat refractory CRS and ICANS after CAR T-cell therapy. Blood. 2023;141(20):2430-42. [DOI:10.1182/blood.2022017414]
12. Jafari M, Kadkhodazadeh M, Bahrololoumi M, Hashemi N, Shokrgozar MA, Arashkia A, et al. Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses. Front Immunol. 2022;13:1012806. [DOI:10.3389/fimmu.2022.1012806]
13. Jatiani SS, Aleman A, Madduri D, Chari A, Cho HJ, Richard S, et al. Myeloma CAR-T CRS management with IL-1R antagonist anakinra. Clin Lymphoma Myeloma Leuk. 2020;20(9):632-6. [DOI:10.1016/j.clml.2020.04.020]
14. Honikel MM, Olejniczak SH. Co-stimulatory receptor signaling in CAR-T cells. Biomolecules. 2022;12(9):1303. [DOI:10.3390/biom12091303]
15. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720-32. [DOI:10.1182/blood-2010-07-273417]
16. Caraffa A, Gallenga CE, Kritas SK, Ronconi G, Di Emidio P, Conti P. CAR-T cell therapy causes inflammation by IL-1 which activates inflammatory cytokine mast cells: anti-inflammatory role of IL-37. J Biol Regul Homeost Agents. 2019;33(6):1981-5.
17. Zhao W, Ma L, Cai C, Gong X. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. Int J Biol Sci. 2019;15(8):1571-81. [DOI:10.7150/ijbs.34211]
18. Pang Y, Zhao L, Ji X, Guo K, Yin X. Analyses of transcriptomics upon IL-1β-stimulated mouse chondrocytes and the protective effect of catalpol through the NOD2/NF-κB/MAPK signaling pathway. Molecules. 2023;28(4):1606. [DOI:10.3390/molecules28041606]
19. Stein P H, Singer A. Similar co-stimulation requirements of CD4+ and CD8+ primary T helper cells: role of IL-1 and IL-6 in inducing IL-2 secretion and subsequent proliferation. Int Immunol. 1992;4(3):327-35. [DOI:10.1093/intimm/4.3.327]
20. Levich JD, Signorella AP, Wittenberg G, Weigle WO. Macrophage handling of a tolerogen and the role of IL 1 in tolerance induction in a helper T cell clone in vitro. J Immunol. 1987;138(11):3675-9. [DOI:10.4049/jimmunol.138.11.3675]
21. Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25(6):469-84. [DOI:10.1016/j.smim.2013.10.008]
22. Arnold DD, Yalamanoglu A, Boyman O. Systematic review of safety and efficacy of IL-1-targeted biologics in treating immune-mediated disorders. Front Immunol. 2022;13:888392. [DOI:10.3389/fimmu.2022.888392]
23. Holsti MA, Raulet DH. IL-6 and IL-1 synergize to stimulate IL-2 production and proliferation of peripheral T cells. J Immunol. 1989;143(8):2514-9. [DOI:10.4049/jimmunol.143.8.2514]
24. Van Den Eeckhout B, Huyghe L, Van Lint S, Burg E, Plaisance S, Peelman F, et al. Selective IL-1 activity on CD8+ T cells empowers antitumor immunity and synergizes with neovasculature-targeted TNF for full tumor eradication. J Immunother Cancer. 2021;9(11):e003293. [DOI:10.1136/jitc-2021-003293]
25. Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T cell therapy in hematological malignancies: current opportunities and challenges. Front Immunol. 2022;13:927153. [DOI:10.3389/fimmu.2022.927153]
26. Chohan KL, Siegler EL, Kenderian SS. CAR-T cell therapy: the efficacy and toxicity balance. Curr Hematol Malig Rep. 2023;18(2):9-18. [DOI:10.1007/s11899-023-00687-7]
27. Stein-Merlob AF, Rothberg MV, Ribas A, Yang EH. Cardiotoxicities of novel cancer immunotherapies. Heart. 2021;107(21):1694-703. [DOI:10.1136/heartjnl-2020-318083]
28. Liang EC, Sidana S. Managing side effects: guidance for use of immunotherapies in multiple myeloma. Hematology Am Soc Hematol Educ Program. 2023;2023(1):348-56. [DOI:10.1182/hematology.2023000435]
29. Hao Z, Li R, Meng L, Han Z, Hong Z. Macrophage, the potential key mediator in CAR-T related CRS. Exp Hematol Oncol. 2020;9:15. [DOI:10.1186/s40164-020-00171-5]
30. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739-48. [DOI:10.1038/s41591-018-0036-4]
31. Rossi JF, Lu ZY, Massart C, Levon K. Dynamic immune/inflammation precision medicine: The good and the bad inflammation in infection and cancer. Front Immunol. 2021;12:595722. [DOI:10.3389/fimmu.2021.595722]
32. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188-95. [DOI:10.1182/blood-2014-05-552729]
33. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633-52. [DOI:10.1038/nrd3800]
34. Neill L, Rees J, Roddie C. Neurotoxicity-CAR T-cell therapy: what the neurologist needs to know. Pract Neurol. 2020;20(4):285-93. [DOI:10.1136/practneurol-2020-002550]
35. Wehrli M, Gallagher K, Chen YB, Leick MB, McAfee SL, El-Jawahri AR, et al. Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS). J Immunother Cancer. 2022;10(1). [DOI:10.1136/jitc-2021-003847]
36. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019;34:45-55. [DOI:10.1016/j.blre.2018.11.002]
37. Gust J, Ponce R, Liles WC, Garden GA, Turtle CJ. Cytokines in CAR T cell-associated neurotoxicity. Front Immunol. 2020;11:577027. [DOI:10.3389/fimmu.2020.577027]
38. Freyer CW, Porter DL. Cytokine release syndrome and neurotoxicity following CAR T-cell therapy for hematologic malignancies. J Allergy Clin Immunol. 2020;146(5):940-8. [DOI:10.1016/j.jaci.2020.07.025]
39. Miao L, Zhang Z, Ren Z, Li Y. Reactions related to CAR-T cell therapy. Front Immunol. 2021;12:663201. [DOI:10.3389/fimmu.2021.663201]
40. Adibzadeh S, Amiri S, Esmail Nia G, Rezakhani M, Kohanrooz Z, Maserat N, et al. Therapeutic approaches and vaccination in fighting COVID-19 infections: A review. Gene Rep. 2022;27:101619. [DOI:10.1016/j.genrep.2022.101619]
41. Ludwig H, Terpos E, van de Donk N, Mateos MV, Moreau P, Dimopoulos MA, et al. Prevention and management of adverse events during treatment with bispecific antibodies and CAR T cells in multiple myeloma: a consensus report of the European Myeloma Network. Lancet Oncol. 2023;24(6):e255-e69. [DOI:10.1016/S1470-2045(23)00159-6]
42. Doyle LW, Cheong JL, Hay S, Manley BJ, Halliday HL. Late (≥7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2021;11(11):CD001145. [DOI:10.1002/14651858.CD001145.pub5]
43. Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol. 2019;15(8):813-22. [DOI:10.1080/1744666X.2019.1629904]
44. Sandler RD, Tattersall RS, Schoemans H, Greco R, Badoglio M, Labopin M, et al. Diagnosis and management of secondary HLH/MAS following HSCT and CAR-T cell therapy in adults; A review of the literature and a survey of practice within EBMT centres on behalf of the autoimmune diseases working party (ADWP) and transplant complications working party (TCWP). Front Immunol. 2020;11:524. [DOI:10.3389/fimmu.2020.00524]
45. Topp MS, van Meerten T, Houot R, Minnema MC, Bouabdallah K, Lugtenburg PJ, et al. Earlier corticosteroid use for adverse event management in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br J Haematol. 2021;195(3):388-98. [DOI:10.1111/bjh.17673]
46. Park JH, Nath K, Devlin SM, Sauter CS, Palomba ML, Shah G, et al. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat Med. 2023;29(7):1710-7. [DOI:10.1038/s41591-023-02404-6]
47. Patoulias D. Anakinra for macrophage activation syndrome. Eur J Intern Med. 2023;111:133-4. [DOI:10.1016/j.ejim.2023.01.002]
48. Bami S, Vagrecha A, Soberman D, Badawi M, Cannone D, Lipton JM, et al. The use of anakinra in the treatment of secondary hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2020;67(11):e28581. [DOI:10.1002/pbc.28581]
49. Gazeau N, Liang EC, Wu QV, Voutsinas JM, Barba P, Iacoboni G, et al. Anakinra for refractory cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T cell therapy. Transplant Cell Ther. 2023;29(7):430-7. [DOI:10.1016/j.jtct.2023.04.001]
50. Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med. 2006;355(6):581-92. [DOI:10.1056/NEJMoa055137]
51. Park JH, Sauter CS, Palomba ML, Shah G, Dahi P, Lin RJ, et al. A phase II study of prophylactic anakinra to prevent CRS and neurotoxicity in patients receiving CD19 CAR T cell therapy for relapsed or refractory lymphoma. Blood. 2021;138:96. [DOI:10.1182/blood-2021-150431]
52. Nath K, Devlin SM, Sauter CS, Palomba ML, Shah GL, Dahi P, et al. A phase II trial of prophylactic anakinra to prevent neurotoxicity in patients receiving anti-CD19 CAR T-cell therapy for relapsed or refractory lymphoma: final results from cohort 2. Blood. 2023;142:357. [DOI:10.1182/blood-2023-174728]
53. Dhimolea E. Canakinumab. MAbs. 2010;2(1):3-13. [DOI:10.4161/mabs.2.1.10328]
54. Dhorepatil A, Ball S, Ghosh RK, Kondapaneni M, Lavie CJ. Canakinumab: promises and future in cardiometabolic diseases and malignancy. Am J Med. 2019;132(3):312-24. [DOI:10.1016/j.amjmed.2018.10.013]
55. Chen Y, Li R, Shang S, Yang X, Li L, Wang W, Wang Y. Therapeutic potential of TNFα and IL1β blockade for CRS/ICANS in CAR-T therapy via ameliorating endothelial activation. Front Immunol. 2021;12:623610. [DOI:10.3389/fimmu.2021.623610]
56. Schwier NC. Rilonacept: A Newly Approved Treatment for Recurrent Pericarditis. Ann Pharmacother. 2022;56(5):572-81. [DOI:10.1177/10600280211036499]
57. Coll RC. Therapeutic targeting of inflammasome signaling by blocking interleukin-1. Inflammasome Biology. 2023;37:583-603. [DOI:10.1016/B978-0-323-91802-2.00010-4]
58. Frenay J, Bellaye PS, Oudot A, Helbling A, Petitot C, Ferrand C, et al. IL-1RAP, a key therapeutic target in cancer. Int J Mol Sci. 2022;23(23):14918. [DOI:10.3390/ijms232314918]
59. Warda W, Da Rocha MN, Trad R, Haderbache R, Salma Y, Bouquet L, et al. Overcoming target epitope masking resistance that can occur on low-antigen-expresser AML blasts after IL-1RAP chimeric antigen receptor T cell therapy using the inducible caspase 9 suicide gene safety switch. Cancer Gene Ther. 2021;28(12):1365-75. [DOI:10.1038/s41417-020-00284-3]
60. Trad R, Warda W, Alcazer V, Neto da Rocha M, Berceanu A, Nicod C, et al. Chimeric antigen receptor T-cells targeting IL-1RAP: a promising new cellular immunotherapy to treat acute myeloid leukemia. J Immunother Cancer. 2022;10(7):e004222. [DOI:10.1136/jitc-2021-004222]
61. Bouquet L, Bole-Richard E, Warda W, Neto Da Rocha M, Trad R, Nicod C, et al. RapaCaspase-9-based suicide gene applied to the safety of IL-1RAP CAR-T cells. Gene Ther. 2023;30(9):706-13. [DOI:10.1038/s41434-023-00404-2]
62. Nicod C, da Rocha MN, Warda W, Roussel X, Haderbache R, Seffar E, et al. CAR-T cells targeting IL-1RAP produced in a closed semiautomatic system are ready for the first phase I clinical investigation in humans. Curr Res Transl Med. 2023;71(2):103385. [DOI:10.1016/j.retram.2023.103385]
63. Da Rocha MN, Guiot M, Nicod C, Trad R, Bouquet L, Haderbache R, et al. Coated recombinant target protein helps explore IL-1RAP CAR T-cell functionality in vitro. Immunol Res. 2023;71(2):276-82. [DOI:10.1007/s12026-022-09348-y]
64. Liu D, Xu X, Dai Y, Zhao X, Bao S, Ma W, et al. Blockade of AIM2 inflammasome or alpha1-AR ameliorates IL-1beta release and macrophage-mediated immunosuppression induced by CAR-T treatment. J Immunother Cancer. 2021;9(1). [DOI:10.1136/jitc-2020-001466]
65. Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, et al. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol. 2024;13(1):96. [DOI:10.1186/s40164-024-00564-w]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb