Volume 28, Issue 5 And 6 (9-2024)                   IBJ 2024, 28(5 And 6): 235-244 | Back to browse issues page

Ethics code: IR.AJUMS.REC.1400.461


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saki S, Monjezi S, Ghaffari F, Orak G, Salehipour Bavarsad S, Khedri A et al . Unraveling the Exosome-miR-133a Axis: Targeting TGF-β Signaling via WJ-MSC-Derived Exosomes for Anti-Fibrotic Therapy in Liver Fibrosis. IBJ 2024; 28 (5 and 6) :235-244
URL: http://ibj.pasteur.ac.ir/article-1-4357-en.html
Abstract:  
Background: One of the primary drivers of liver fibrosis is the excessive accumulation of extracellular matrix (ECM), primarily caused by the over-proliferation of hepatic star-shaped cells (HSCs). The activation of HSCs by transforming growth factor beta (TGF-β) has a critical role in initiating fibrosis. Recent studies have suggested that miRNA-133a significantly regulates the fibrogenesis process, which its downregulation is associated with the fibrosis progression. Understanding the role of miRNA-133a provides potential therapeutic insights for targeting TGF-β signaling and mitigating liver fibrosis. We investigated whether exosomes could attenuate liver fibrosis by enhancing the antifibrotic effects of miR-133a.
Methods: The LX-2 cell line was treated with TGF-β for 24 hours, followed by an additional 24 hours of treatment with exosomes. After this treatment period, we assessed the mRNA expression levels of α-SMA, collagen 1, and miR-133a, as well as the protein levels of p-Smad3.
Results: TGF-β exposure significantly increased the expression level of α-SMA and collagen 1 genes and elevated the levels of p-Smad3 protein. Additionally, it resulted in a significant downregulation of miR-133a compared to the control group. Exosome administration effectively reduced the TGF-β-induced upregulation of p-Smad3, α-SMA, and collagen 1 genes, but increased miR-133a expression levels.
Conclusion: Our findings indicate that by partially mitigating the downregulation of miR-133a, exosomes can effectively inhibit the persistent activation of HSCs. Furthermore, in the context of in vitro liver fibrosis, exosomes can suppress the TGF-β/Smad3 pathway, reducing the accumulation of ECM.

 

References
1. Afarin R, Babaahmadi Rezaei H, Yaghooti H, Mohammadtaghvaei N. Fibroblast growth factor 21 reduces cholesterol-induced hepatic fibrogenesis by inhibiting TGF-β/Smad3C signaling pathway in LX2 cells. Hepat Mon. 2021;21(4): e113321. https://doi.org/10.5812/hepatmon.113321 [DOI:10.5812/hepatmon.113321..]
2. Mohammadzadeh G, Afarin R, Salehipour Bavarsad S, Aslani F, Asadizadeh S, Shakerian E. Comparison of the effects of cholesterol, palmitic acid, and glucose on activation of human hepatic stellate cells to induce liver fibrosis. J Diabetes Metab Disord. 2022;21(2):1531-8. [DOI:10.1007/s40200-022-01095-z]
3. Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 2020;9(4):875. [DOI:10.3390/cells9040875]
4. Luangmonkong T, Suriguga S, Mutsaers HAM, Groothuis GMM, Olinga P, Boersema M. Targeting oxidative stress for the treatment of liver fibrosis. Rev Physiol Biochem Pharmacol. 2018;175:71-102. [DOI:10.1007/112_2018_10]
5. Liang S, Kisseleva T, Brenner DA. The role of NADPH oxidases (NOXs) in liver fibrosis and the activation of myofibroblasts. Fron tPhysiol. 2016;7:17. [DOI:10.3389/fphys.2016.00017]
6. Tacke F, Trautwein C. Mechanisms of liver fibrosis resolution. J Hepatol. 2015;63(4):1038-9. [DOI:10.1016/j.jhep.2015.03.039]
7. Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J. 2016;283(12):2219-32. [DOI:10.1111/febs.13665]
8. Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem. 2016;64(3):157-67. [DOI:10.1369/0022155415627681]
9. Afarin R, Babaahmadi Rezaei H, Yaghouti SH, Mohammad Taghvaei N. The effect of cholesterol on the activation of TGF-β/Smad3C signaling pathway in hepatic stellate cells and its role in the progression of liver fibrogenesis. J Isfahan Med Sch. 2021;39(619):212-8.
10. Roshani Asl E, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, et al. Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 2021;278:119499. [DOI:10.1016/j.lfs.2021.119499]
11. Jiang XP, Ai WB, Wan LY, Zhang YQ, Wu JF. The roles of microRNA families in hepatic fibrosis. Cell Biosci. 2017; https://doi.org/10.1186/s13578-017-0161-7 [DOI:10.1186/s13578-017-0161-7.]
12. Wang J, Chu ESH, Chen HY, Man K, Go MYY, Huang XR, et al. MicroRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget. 2015;6(9):7325-38. [DOI:10.18632/oncotarget.2621]
13. Roderburg C, Luedde M, Cardenas DV, Vucur M, Mollnow T, Zimmermann HW, et al. miR-133a mediates TGF-β-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. J Hepatol. 2013;58(4):736-42. [DOI:10.1016/j.jhep.2012.11.022]
14. Zhang S, Yang Y, Fan L, Zhang F, Li L. The clinical application of mesenchymal stem cells in liver disease: the current situation and potential future. Ann Transl Med. 2020;8(8):565. [DOI:10.21037/atm.2020.03.218]
15. Tsuchiya A, Takeuchi S, Watanabe T, Yoshida T, Nojiri S, Ogawa M, et al. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as "conducting cells" for improvement of liver fibrosis and regeneration. Inflamm Regener. 2019;39(1):1-6. [DOI:10.1186/s41232-019-0107-z]
16. Ye JS, Su XS, Stoltz JF, Isla N, Zhang L. Signalling pathways involved in the process of mesenchymal stem cells differentiating into hepatocytes. Cell Prolif. 2015;48(2):157-65. [DOI:10.1111/cpr.12165]
17. Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49(6):e346. [DOI:10.1038/emm.2017.63]
18. Afarin R, Behdarvand T, Shakerian E, Salehipour Bavarsad S, Rashidi M. Exosomes of Whartons' jelly mesenchymal stem cell reduce the NOX genes in TGF-β-induced hepatic fibrosis. Iran J Basic Med Sci. 2022;25(12):1498-1503.
19. Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther. 2019;10(1):98. [DOI:10.1186/s13287-019-1204-2]
20. Hong Y, Lee J, Vu TH, Lee S, Lillehoj HS, Hong YH. Exosomes of lipopolysaccharide-stimulated chicken macrophages modulate immune response through the MyD88/NF-κB signaling pathway. Dev Comp Immunol. 2021;115:103908. [DOI:10.1016/j.dci.2020.103908]
21. Afarin R, Aslani F, Asadizade S, Jaberian Asl B, Mohammadi Gahrooie M, Shakerian E, et al. The effect of lipopolysaccharide-stimulated adipose-derived mesenchymal stem cells on NAFLD treatment in high-fat diet-Fed rats. Iran J Pharm Res. 2023;22(1):e134807. [DOI:10.5812/ijpr-134807]
22. Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J transl Med. 2015;13:308. [DOI:10.1186/s12967-015-0642-6]
23. Kitano M, Bloomston PM. Hepatic stellate cells and microRNAs in pathogenesis of liver fibrosis. J Clin Med. 2016;5(3):38. [DOI:10.3390/jcm5030038]
24. Shakerian E, Akbari R, Mohammadtaghvaei N, Mohammadi Gahrooie M, Afarin R. Quercetin reduces hepatic fibrogenesis by inhibiting TGF-β/Smad3 signaling pathway in LX-2 cell line. Jundishapur J Nat Pharm Prod. 2022;17(1):e113484. [DOI:10.5812/jjnpp.113484]
25. Bindal P, Ramasamy TS, Kasim NHA, Gnanasegaran N, Chai WL. Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol Int. 2018;42(7):832-40. [DOI:10.1002/cbin.10938]
26. Bansal MB. Hepatic fibrogenesis. Elsevier. 2025;(1): 247-72. [DOI:10.1016/B978-0-443-26710-9.00008-0]
27. Marquez RT, Bandyopadhyay S, Wendlandt EB, Keck K, Hoffer BA, Icardi MS, et al. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab Invest. 2010;90(12):1727-36. [DOI:10.1038/labinvest.2010.126]
28. Tu X, Zhang H, Zhang J, Zhao S, Zheng X, Zhang Z, et al. MicroRNA-101 suppresses liver fibrosis by targeting the TGF β signalling pathway. J Pathol. 2014;234(1):46-59. [DOI:10.1002/path.4373]
29. Lakner AM, Steuerwald NM, Walling TL, Ghosh S, Li T, McKillop IH, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology. 2012;56(1):300-10. [DOI:10.1002/hep.25613]
30. He X, Xie J, Zhang D, Su Q, Sai X, Bai R, et al. Recombinant adeno-associated virus-mediated inhibition of microRNA-21 protects mice against the lethal schistosome infection by repressing both IL-13 and transforming growth factor beta1 pathways. Hepatology. 2015;61(6):2008-17. [DOI:10.1002/hep.27671]
31. Isono M, Takeuchi J, Maehara A, Nakagawa Y, Katagiri H, Miyatake K, et al. Effect of CD44 signal axis in the gain of mesenchymal stem cell surface antigens from synovial fibroblasts in vitro. Heliyon. 2022;8(10):e10739. [DOI:10.1016/j.heliyon.2022.e10739]
32. L. Ramos T, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun signal. 2016;14(2): https://doi.org/10.1186/s12964-015-0124-8 [DOI:10.1186/s12964-015-0124-8.]
33. Walecka I, Gil-Kulik P, Krzyżanowski A, Czop M, Galkowski D, Karwat J, et al. Phenotypic characterization of adherent cells population CD34+ CD90+ CD105+ derived from Wharton's jelly. Med Sci Monit. 2017;23:1886-95. [DOI:10.12659/MSM.902186]
34. Lin K, Yang Y, Cao Y, Liang J, Qian J, Wang X, et al. Combining single-cell transcriptomics and cell tagging to identify differentiation trajectories of human adipose-derived mesenchymal stem cells. Stem Cell Res Ther. 2023;14(1):14. [DOI:10.1186/s13287-023-03237-3]
35. Ababneh NA, Al-Kurdi B, Jamali F, Awidi A. A comparative study of the capability of MSCs isolated from different human tissue sources to differentiate into neuronal stem cells and dopaminergic-like cells. Peer J. 2022;10:e13003. [DOI:10.7717/peerj.13003]
36. Wu S, Zhao Y, Zhang Z, Zuo C, Wu H, Liu Y. The Advances and applications of characterization technique for exosomes: from dynamic light scattering to super-resolution imaging technology. Photonics. 2024;11(2):101. [DOI:10.3390/photonics11020101]
37. Dilsiz N. Technology. Exosomes as new generation vehicles for drug delivery systems. J Drug Deliv Sci Technol. 2024;95:105562. [DOI:10.1016/j.jddst.2024.105562]
38. Huang P, Ma H, Cao Y, Zhan T, Zhang T, Wang X, et al. Activation of primary hepatic stellate cells and liver fibrosis induced by targeting TGF-β1/Smad signaling in schistosomiasis in mice. Parasit Vectors. 2022;15(1):456. [DOI:10.1186/s13071-022-05584-1]
39. Afarin R, Behdarvand T, Shakerian E, Bavarsad SS, Rashidi M. Exosomes of Whartons' jelly mesenchymal stem cell reduce the NOX genes in TGF-β-induced hepatic fibrosis. Iran J Basic Med Sci. 2022;25(12):1498-1503.
40. Wang XL, Yang M, Wang Y. Roles of transforming growth factor-β signaling in liver disease. World J Hepatol. 2024;16(7):973-9. [DOI:10.4254/wjh.v16.i7.973]
41. Jaberian Asl B, Monjezi S, Orak G, Ghaffari F, Salehipour Bavarsad S, Dinarvand N, et al. The up-regulation of miR-146a and miR-29b via exosomes protects against liver fibrosis by inhibiting the TGF-β/Smad3c signaling pathway. Hepat Mon. 2024;24(1):e144095. [DOI:10.5812/hepatmon-144095]
42. Yu HR, Huang HC, Chen IL, Li SC. Exosomes secreted by Wharton's jelly-derived mesenchymal stem cells promote the ability of cell proliferation and migration for keratinocyte. Int J Mol Sci. 2024;25(9):4758. [DOI:10.3390/ijms25094758]
43. Wang S, Chen Y, Lei G, Ma X, An L, Wang H, et al. Serum exosome-derived microRNA-193a-5p and miR-381-3p regulate AMPK/TGF-β/Smad2/3 signaling pathway and promote fibrogenesis. Clin Transl Gastroenterol. 2024:15(2):e00662. [DOI:10.14309/ctg.0000000000000662]
44. Wang R, Shi Y, Lv Y, Xie C, Hu Y. The novel insights of epithelial-derived exosomes in various fibrotic diseases. Biomed Pharmacother. 2024;174:116591. [DOI:10.1016/j.biopha.2024.116591]
45. Yao Y, Chen R, Wang G, Zhang Y, Liu F. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. Stem Cell Res Ther. 2019;10(1)225. [DOI:10.1186/s13287-019-1332-8]
46. Zhu QJ, Zhu M, Xu XX, Meng XM, Wu YG. Exosomes from high glucose-treated macrophages activate glomerular mesangial cells via TGF-β1/Smad3 pathway in vivo and in vitro. FASEB J. 2019;33(8):9279-90. [DOI:10.1096/fj.201802427RRR]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb