Volume 28, Issue 5 And 6 (9-2024)                   IBJ 2024, 28(5 And 6): 245-254 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemzadeh N, Pourrajab F, Dehghani Firoozabadi A, Rahnama M. Liposome-Mediated MicroRNA Delivery: an Additional Layer of Gene Network Regulation and Nuclear Reprogramming. IBJ 2024; 28 (5 and 6) :245-254
URL: http://ibj.pasteur.ac.ir/article-1-4271-en.html
Abstract:  
Background: Developing miRNA-mediated cell engineering introduces a novel technology for cell reprogramming and generating patient-specific tissues for therapeutic use, facilitating basic research on human adult stem cells. Furthermore, optimizing a reprogramming method without transduction minimizes the risk of tumorigenesis, especially for reprogrammed cells. This study aimed to explore the use of liposomes as vehicles for delivering miRNAs to cells, focusing on their role in regulating gene networks and facilitating nuclear reprogramming.
Methods: This study utilized cationic liposomal nanoparticles preserved under different conditions to introduce miRNAs into hMSCs. Using qPCR, the effective induction of pluripotency factors (OCT4, SOX2, and NANOG) was examined.
Results: Results indicated that miR-302a and miR-34a regulate pluripotency by interacting with key transcription factors, including OCT4, SOX2, and NANOG. Notably, the expression pattern of OCT4 showed that lipoplexes containing miR-302a increased the expression of this gene, while in the case of miR-34a, it decreased. Additionally, the study found that pluripotency precursors can be induced by delivering liposomal microRNA (LP-miRs).
Conclusion: LP-miRs, as small-molecule therapeutics, can influence reprogramming/engineering and the conversion of cells into other lineages. These findings have significant implications for our understanding of the mechanisms underlying the regulation of pluripotency and may have potential applications in regenerative medicine.

 

References
1. Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, et al. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int. 2020;20:254. [DOI:10.1186/s12935-020-01342-4]
2. Carey BW, Markoulaki S, Hanna JH, Faddah DA, Buganim Y, Kim J, et al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell. 2011;9(6):588-98. [DOI:10.1016/j.stem.2011.11.003]
3. Di Fiore R, Suleiman S, Pentimalli F, O'toole SA, O'leary JJ, Ward MP, et al. Could MicroRNAs be useful tools to improve the diagnosis and treatment of rare gynecological cancers? A brief overview. Int J Mol Sci. 2021;22(8):3822. [DOI:10.3390/ijms22083822]
4. Farooque F, Wasi M, Mughees MM. Liposomes as Drug Delivery System: An Updated Review. J Drug Deliv Ther. 2021;11(5):149-58. [DOI:10.22270/jddt.v11i5-S.5063]
5. Gao Y, Liu X, Chen N, Yang X, Tang F. Recent advance of liposome nanoparticles for nucleic acid therapy. Pharmaceutics. 2023;15(1):178. [DOI:10.3390/pharmaceutics15010178]
6. Li HL, Wei JF, Fan LY, Wang SH, Zhu L, Li TP, et al. miR-302 regulates pluripotency, teratoma formation and differentiation in stem cells via an AKT1/OCT4-dependent manner. Cell Death Dis. 2016;7(1):e2078. [DOI:10.1038/cddis.2015.383]
7. Gao QQ, Putzbach WE, Murmann AE, Chen S, Sarshad AA, Peter JM, et al. 6mer seed toxicity in tumor suppressive microRNAs. Nat Commun. 2018;9(1):4504. [DOI:10.1038/s41467-018-06526-1]
8. Kizub I, Rozhok A, Bilousova G. Induced Pluripotent Stem Cells: Advances and Applications in Regenerative Medicine. 2022. [DOI:10.5772/intechopen.109274]
9. Yang J, Chen W, Sun Y, Xia P, Liu J, Zhang W. The role of microRNAs in regulating cadmium-induced apoptosis by targeting Bcl-2 in IEC-6 cells. Toxicol Appl Pharmacol. 2021;432:115737. [DOI:10.1016/j.taap.2021.115737]
10. Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, et al. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel). 2023;14(7):1434. [DOI:10.3390/genes14071434]
11. Grubelnik G, Boštjančič E, Grošelj A, Zidar N. Expression of NANOG and its regulation in oral squamous cell carcinoma. Biomed Res Int. 2020:8573793. [DOI:10.1155/2020/8573793]
12. Peskova L, Cerna K, Oppelt J, Mraz M, Barta T. Oct4-mediated reprogramming induces embryonic-like microRNA expression signatures in human fibroblasts. Sci Rep. 2019;9(1):15759. [DOI:10.1038/s41598-019-52294-3]
13. Sugawara T, Miura T, Kawasaki T, Umezawa A, Akutsu H. The hsa-miR-302 cluster controls ectodermal differentiation of human pluripotent stem cell via repression of DAZAP2. Regen Ther. 2020;15:1-9 [DOI:10.1016/j.reth.2020.03.011]
14. Long W, Zhao W, Ning B, Huang J, Chu J, Li L, et al. PHF20 collaborates with PARP1 to promote stemness and aggressiveness of neuroblastoma cells through activation of SOX2 and OCT4. J Mol Cell Biol. 2018;10(2):147-60. [DOI:10.1093/jmcb/mjy007]
15. Liu Y, Zhang X, Chen J, Li T. Inhibition of mircoRNA-34a enhances survival of human bone marrow mesenchymal stromal/stem cells under oxidative stress. Med Sci Monit. 2018;24:264-71. Med Sci Monit Int Med J Exp Clin Res. 2018;24:264. [DOI:10.12659/MSM.904618]
16. Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther. 2024;19(3):367-88. [DOI:10.2174/1574888X18666230417084518]
17. Liu Z, Kraus WL. Catalytic-independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci. Mol Cell. 2017;65(4):589-603. [DOI:10.1016/j.molcel.2017.01.017]
18. Ghasemzadeh N, Pourrajab F, Firoozabadi AD, Hekmatimoghaddam S, Haghiralsadat F. Ectopic microRNAs used to preserve human mesenchymal stem cell potency and epigenetics. EXCLI J. 2018;17:576-89.
19. Ando H, Okamoto A, Yokota M, Asai T, Dewa T, Oku N. Polycation liposomes as a vector for potential intracellular delivery of microRNA. J Gene Med. 2013;15(10):375-83. [DOI:10.1002/jgm.2744]
20. Endo-Takahashi Y, Negishi Y, Nakamura A, Ukai S, Ooaku K, Oda Y, et al. Systemic delivery of miR-126 by miRNA-loaded Bubble liposomes for the treatment of hindlimb ischemia. Sci Rep. 2014;4(1):3883. [DOI:10.1038/srep03883]
21. Lee MR, Prasain N, Chae HD, Kim YJ, Mantel C, Yoder MC, et al. Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells. 2013;31(4):666-81. [DOI:10.1002/stem.1302]
22. Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol. 2021;22(6):410-24. [DOI:10.1038/s41580-021-00335-z]
23. Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opin Ther Targets. 2015;19(2):285-97. [DOI:10.1517/14728222.2014.975794]
24. Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F, et al. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells. 2013;31(2):259-68 [DOI:10.1002/stem.1278]
25. Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S. Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy. Biores Open Access. 2020;9(1):121-36.Singh VK, Kumar N, Kalsan M, Saini A, Chandra R. Mechanism of induction: induced pluripotent stem cells (iPSCs). J Stem Cells. 2015;10(1):43. [DOI:10.1089/biores.2019.0046]
26. Singh VK, Kumar N, Kalsan M, Saini A, Chandra R. Mechanism of induction: induced pluripotent stem cells (iPSCs). J Stem Cells. 2015;10(1):43. [DOI:10.5348/ijbti-2015-16-RA-2]
27. Divisato G, Passaro F, Russo T, Parisi S. The key role of microRNAs in self-renewal and differentiation of embryonic stem cells. Int J Mol Sci. 2020;21(17):6285. [DOI:10.3390/ijms21176285]
28. Jiao X, Qian X, Wu L, Li B, Wang Y, Kong X, et al. microRNA: the impact on cancer stemness and therapeutic resistance. Cells. 2019;9(1):8. [DOI:10.3390/cells9010008]
29. Zhong Q, Zheng C, Yi K, Mintz RL, Lv S, Tao Y, et al. Structural and componential design: new strategies regulating the behavior of lipid-based nanoparticles in vivo. Biomater Sci. 2023;11(14). [DOI:10.1039/D3BM00387F]
30. Sun D, Lu ZR. Structure and function of cationic and ionizable lipids for nucleic acid delivery. Pharm Res. 2023;40(1):27-46. [DOI:10.1007/s11095-022-03460-2]
31. Li WJ, Wang Y, Liu R, Kasinski AL, Shen H, Slack FJ, et al. MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Front cell Dev Biol. 2021;9:640587. [DOI:10.3389/fcell.2021.640587]
32. Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol. 2011;13(11):1353-60. [DOI:10.1038/ncb2366]
33. Deng S, Wang M, Wang C, Zeng Y, Qin X, Tan Y, et al. P53 downregulates PD-L1 expression via miR-34a to inhibit the growth of triple-negative breast cancer cells: a potential clinical immunotherapeutic target. Mol Biol Rep. 2023;50(1):577-87. [DOI:10.1007/s11033-022-08047-z]
34. Aranha MM, Santos DM, Sola S, Steer CJ, Rodrigues CMP. miR-34a regulates mouse neural stem cell differentiation. Plos one. 2011;6(8):e21396. [DOI:10.1371/journal.pone.0021396]
35. Navarro F, Gutman D, Meire E, Cáceres M, Rigoutsos I, Bentwich Z, et al. miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood. 2009 Sep;114(10):2181-92. [DOI:10.1182/blood-2009-02-205062]
36. Sebastiani G, Grieco GE, Brusco N, Ventriglia G, Formichi C, Marselli L, et al. MicroRNA expression analysis of in vitro dedifferentiated human pancreatic islet cells reveals the activation of the pluripotency-related microRNA cluster miR-302s. Int J Mol Sci. 2018;19(4):1170. [DOI:10.3390/ijms19041170]
37. Huang Y, Mo W, Ding X, Ding Y. Long non-coding RNAs in breast cancer stem cells. Med Oncol. 2023;40(6):177. [DOI:10.1007/s12032-023-02046-1]
38. Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, et al. microRNA-34 family: From mechanism to potential applications. Int J Biochem Cell Biol. 2022;144:106168. [DOI:10.1016/j.biocel.2022.106168]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb