1. Yanaka S, Yagi H, Yogo R, Onitsuka M, Kato K. Glutamine-free mammalian expression of recombinant glycoproteins with uniform isotope labeling: an application for NMR analysis of pharmaceutically relevant Fc glycoforms of human immunoglobulin G1. J Biomol NMR. 2022;76(1-2):17-22. [
DOI:10.1007/s10858-021-00387-5]
2. Arora P, Singh V, Kumar A. Mammalian Cell Culture: An Edge to Biopharmaceutical Industry. Biomanuf Sustainable Prod Biomol. 2023:297-313. [
DOI:10.1007/978-981-19-7911-8_15]
3. Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30(5):1158-70. [
DOI:10.1016/j.biotechadv.2011.08.022]
4. Glinšek K, Bozovičar K, Bratkovič T. CRISPR technologies in chinese hamster ovary cell line engineering. Int J Mol Sci. 2023;24(9):8144. [
DOI:10.3390/ijms24098144]
5. Van Der Valk J, Bieback K, Buta C, Cochrane B, Dirks W, Fu J, et al. Fetal bovine serum (FBS): past-present-future. Altex. 2018;35(1):99-118. [
DOI:10.14573/altex.1705101]
6. Hesler M, Kohl Y, Wagner S, von Briesen H. Non-pooled human platelet lysate: A potential serum alternative for in vitro cell culture. Altern Lab Anim. 2019;47(3-4):116-27. [
DOI:10.1177/0261192919882516]
7. Kim YJ, Han SK, Yoon S, Kim CW. Rich production media as a platform for CHO cell line development. AMB Express. 2020;10(1):1-13. [
DOI:10.1186/s13568-020-01025-3]
8. Baker M. Reproducibility: Respect your cells! Nature. 2016;537(7620):433-5. [
DOI:10.1038/537433a]
9. Chelladurai KS, Christyraj JDS, Rajagopalan K, Yesudhason BV, Venkatachalam S, Mohan M, et al. Alternative to FBS in animal cell culture-An overview and future perspective. Heliyon. 2021;7(8): e07686. [
DOI:10.1016/j.heliyon.2021.e07686]
10. Beltran Paschoal JF, Patiño SS, Bernardino T, Rezende A, Lemos M, Pereira CA, Calil Jorge SA. Adaptation to serum-free culture of HEK 293T and Huh7.0 cells. BMC Proc. 2014;8:259. [
DOI:10.1186/1753-6561-8-S4-P259]
11. Biaggio RT, Abreu-Neto MS, Covas DT, Swiech K. Serum-free suspension culturing of human cells: adaptation,growth,and cryopreservation. Bioprocess Biosyst Eng. 2015;38:1495-507. [
DOI:10.1007/s00449-015-1392-9]
12. Shridhar S, Klanert G, Auer N, Hernandez-Lopez I, Kańduła MM, Hackl M, et al. Transcriptomic changes in CHO cells after adaptation to suspension growth in protein-free medium analysed by a species-specific microarray. J Biotechnol. 2017;257:13-21. [
DOI:10.1016/j.jbiotec.2017.03.012]
13. Rodrigues ME, Costa AR, Henriques M, Cunnah P, Melton DW, Azeredo J, Oliveira R. Advances and drawbacks of the adaptation to serum-free culture of CHO-K1 cells for monoclonal antibody production. Appl Biochem Biotechnol. 2013;169(4):1279-91. [
DOI:10.1007/s12010-012-0068-z]
14. Jukić S, Bubenik D, Pavlović N, Tušek AJ, Srček VG. Adaptation of CHO cells in serum-free conditions for erythropoietin production: Application of EVOP technique for process optimization. Biotechnol Appl Biochem. 2016;63(5):633-41. [
DOI:10.1002/bab.1468]
15. Rourou S, Ben Zakkour M, Kallel H. Adaptation of Vero cells to suspension growth for rabies virus production in different serum free media. Vaccine. 2019;37(47):6987-95. [
DOI:10.1016/j.vaccine.2019.05.092]
16. Wang P, Huang S, Hao Ch, Wang Zh, Zhao H, Liu M, et al. Establishment of a suspension MDBK cell line in serum-free medium for production of bovine Alphaherpesvirus-1. Vaccine. 2021;9(9):1006. [
DOI:10.3390/vaccines9091006]
17. Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. MAbs. 2010;(5):466-77. [
DOI:10.4161/mabs.2.5.12720]
18. Torres M, Zuniga R, Gutierrez M, Vergara M, Collazo N, Reyes J, et al. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFalpha production in CHO cells. Plos one. 2018;13(3):e0194510. [
DOI:10.1371/journal.pone.0194510]
19. Torkashvand F, Vaziri B, Maleknia S, Heydari A, Vossoughi M, Davami F, Mahboudi F. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody. Plos one. 2015;10(10):e0140597. [
DOI:10.1371/journal.pone.0140597]
20. Torres M, Dickson AJ. Combined gene and environmental engineering offers a synergetic strategy to enhance r-protein production in Chinese hamster ovary cells. Biotechnol Bioeng. 2022;119(2):550-65. [
DOI:10.1002/bit.28000]
21. Gyorgypal A, Fratz-Berilla E, Kohnhorst C, Powers DN, Chundawat SPS. Temporal effects of galactose and manganese supplementation on monoclonal antibody N-linked glycosylation infed-batch and perfusion bioreactor operation. Biorxiv. 2023; Doi: 10.1101/2023.04.15.535602. [
DOI:10.1101/2023.04.15.535602]
22. Lomba ALO, Tirapelle MC, Biaggio RT, Abreu-Neto MS, Covas DT, Picanço-Castro V, et al. Serum-free suspension adaptation of HEK-293T cells: Basis for large-scale biopharmaceutical production. Braz Arch Biol Technol. 2021; DOI:10.1590/1678-4324-2021200817. [
DOI:10.1590/1678-4324-2021200817]
23. Li Y. Effective strategies for host cell protein clearance in downstream processing of monoclonal antibodies and Fc-fusion proteins. Protein Expr Purif. 2017;134:96-103. [
DOI:10.1016/j.pep.2017.04.006]
24. Sha S, Yoon S. An investigation of nucleotide sugar dynamics under the galactose supplementation in CHO cell culture. Process Biochem. 2019;81:165-74. [
DOI:10.1016/j.procbio.2019.03.020]
25. Cha HM, Lim JH, Lee KS, Kim DI. Nucleotide sugar precursor feeding strategy to enhance sialylation of albumin-erythropoietin in CHO cell cultures. Process Biochem. 2018;66:197-204. [
DOI:10.1016/j.procbio.2017.12.014]
26. Liu J, Wang J, Fan L, Chen X, Hu D, Deng X, et al. Galactose supplementation enhance sialylation of recombinant Fc-fusion protein in CHO cell: an insight into the role of galactosylation in sialylation. World J Microbiol Biotechnol. 2015;31(7):1147-56. [
DOI:10.1007/s11274-015-1864-8]
27. Ehret J, Zimmermann M, Eichhorn T, Zimmer A. Impact of cell culture media additives on IgG glycosylation produced in Chinese hamster ovary cells. Biotechnol Bioeng. 2019;116(4):816-30. [
DOI:10.1002/bit.26904]
28. McHugh KP, Xu J, Aron KL, Borys MC, Li ZJ. Effective temperature shift strategy development and scale confirmation for simultaneous optimization of protein productivity and quality in Chinese hamster ovary cells. Biotechnol Prog. 2020;36(3):e2959. [
DOI:10.1002/btpr.2959]
29. Toronjo-Urquiza L, Acosta-Martin AE, James DC, Nagy T, Falconer RJ. Resveratrol addition to Chinese hamster ovary cell culture media: The effect on cell growth, monoclonal antibody synthesis, and its chemical modification. Biotechnol Prog. 2020;36(3):e2940. [
DOI:10.1002/btpr.2940]
30. Avello V, Torres M, Vergara M, Berrios J, Valdez-Cruz NA, Acevedo C, et al. Enhanced recombinant protein production in CHO cell continuous cultures under growth-inhibiting conditions is associated with an arrested cell cycle in G1/G0 phase. Plos one. 2022;17(11):e0277620. [
DOI:10.1371/journal.pone.0277620]
31. Avello V, Tapia B, Vergara M, Acevedo C, Berrios J, Reyes JG, Altamirano C. Impact of sodium butyrate and mild hypothermia on metabolic and physiological behaviour of CHO TF 70R cells. Electron J Biotechnol. 2017;27:55-62. [
DOI:10.1016/j.ejbt.2017.03.008]
32. Chen F, Kou T, Fan L, Zhou Y, Ye Zh, Zhao L, Tan W-S. The combined effect of sodium butyrate and low culture temperature on the production, sialylation, and biological activity of an antibody produced in CHO cells. Biotechnol Bioprocess Eng. 2011;16:1157-65. [
DOI:10.1007/s12257-011-0069-8]
33. Jiang Zh, Sharfstein ST. Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng. 2008;100(1):189-94. [
DOI:10.1002/bit.21726]
34. Liu Y, Zhou X, Song Zh, Zhang Y. Sodium butyrate enhances the acidic isoform content of recombinant human erythropoietin produced by Chinese hamster ovary cells. Biotechnol Lett. 2014;36(5):907-11. [
DOI:10.1007/s10529-013-1442-9]
35. Ghafuri-Esfahani A, Shokri R, Sharifi A, Shafiee L, Khosravi R, Kaghazian H, Khalili M. Optimization of parameters affecting on CHO cell culture producing recombinant erythropoietin. Prep Biochem Biotechnol. 2020;50(8):834-41. [
DOI:10.1080/10826068.2020.1753072]
36. Arnold S, Jelinek N. FSH producing cell clone. Google Patents; 2012. Available from: https://patents.google.com/patent/AU2008267138B9/nl
37. Kim D-J, Seok S-H, Baek M-W, Lee H-Y, Juhn J-H, Lee S, et al. Highly expressed recombinant human follicle-stimulating hormone from Chinese hamster ovary cells grown in serum-free medium and its effect on induction of folliculogenesis and ovulation. Fertil Steril. 2010;93(8):2652-60. [
DOI:10.1016/j.fertnstert.2009.05.009]
38. Orlova NA, Kovnir SV, Khodak YA, Polzikov MA, Nikitina VA, Skryabin KG, Vorobiev II. High-level expression of biologically active human follicle stimulating hormone in the Chinese hamster ovary cell line by a pair of tricistronic and monocistronic vectors. Plos one. 2019;14(7):e0219434. [
DOI:10.1371/journal.pone.0219434]
39. Xing Z, Kenty BM, Li ZJ, Lee SS. Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Biotechnol Bioeng. 2009;103(4):733-46. [
DOI:10.1002/bit.22287]
40. Goey CH, Bell Dj, Kontoravdi C. CHO cell cultures in shake flasks and bioreactors present different host cell protein profiles in the supernatant. Biology Eng J. 2019;144:185-92. [
DOI:10.1016/j.bej.2019.02.006]
41. Qian Y, Xing Z, Lee Sh, Mackin NA, He A, Kayne PS, et al. Hypoxia influences protein transport and epigenetic repression of CHO cell cultures in shake flasks. Biotechnol J. 2014;9(11):1413-24. [
DOI:10.1002/biot.201400315]
42. Ahleboot Z, Khorshidtalab M, Motahari P, Mahboudi R, Arjmand R, Mokarizadeh A, Maleknia Sh. Designing a Strategy for pH Control to Improve CHO Cell Productivity in Bioreactor. Avicenna J Med Biotechnol. 2021;13(3):123-30. [
DOI:10.18502/ajmb.v13i3.6365]