Volume 28, Issue 5 And 6 (9-2024)                   IBJ 2024, 28(5 And 6): 282-296 | Back to browse issues page

Ethics code: IR.PII.AEC.1401.005


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghobadian H, Roshanzamir K, Kouhi Abdolabadi M, Ostadi H, Zati Keikha R, Dolatkhah Baghan M, et al . Optimization of Culture Conditions to Improve Follicle-Stimulating Hormone Production by CHO-DG44 Cells in Serum-Free Medium. IBJ 2024; 28 (5 and 6) :282-296
URL: http://ibj.pasteur.ac.ir/article-1-4160-en.html
Abstract:  
Background: In the present study, we attempted to adapt an adherent and serum-dependent Chinese hamster ovary DG44 cell line to a serum-free suspension culture and optimize the culture condition to achieve a higher yield of r-hFSH with acceptable quality. This approach helps to mitigate the risks associated with blood-borne pathogens, reduces lot-to-lot variability, and lowers costs, making it suitable for industrial processing and scale-up.
Methods: The cell adaptation was performed using different chemically defined SFM. This process was followed by optimization through statistical experimental design, focusing on selected physicochemical parameters, including chemical supplementation of the medium and temperature shift. Both small- and large-scale cultures were conducted to test the reproducibility of the optimized condition. The expressed protein was evaluated for comparability with the standard molecule according to the Pharmacopeia guidelines.

Results: RSM analysis indicated that supplementation of the culture medium with galactose and NaBu, along with a temperature downshift, were the main parameters leading to increased cell viability (10%), r-hFSH level (96%), and more importantly, the glycosylation content (49%) of r-hFSH compared to the control condition.
Conclusion: As r-hFSH isoforms generated during in vivo post-translational modifications typically exhibit different serum/plasma half-lives and bioactivity due to their incorporated sialic acid content/glycosylation, further optimizations of r-hFSH production are necessary to enhance its biological activity. In this study, following a primary screening of the studied parameters, optimization of culture conditions based on selected parameters resulted in enhanced quality and quantity of the produced r-hFSH. However, further examination is necessary before transitioning to industrial production.

 

References
1. Yanaka S, Yagi H, Yogo R, Onitsuka M, Kato K. Glutamine-free mammalian expression of recombinant glycoproteins with uniform isotope labeling: an application for NMR analysis of pharmaceutically relevant Fc glycoforms of human immunoglobulin G1. J Biomol NMR. 2022;76(1-2):17-22. [DOI:10.1007/s10858-021-00387-5]
2. Arora P, Singh V, Kumar A. Mammalian Cell Culture: An Edge to Biopharmaceutical Industry. Biomanuf Sustainable Prod Biomol. 2023:297-313. [DOI:10.1007/978-981-19-7911-8_15]
3. Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30(5):1158-70. [DOI:10.1016/j.biotechadv.2011.08.022]
4. Glinšek K, Bozovičar K, Bratkovič T. CRISPR technologies in chinese hamster ovary cell line engineering. Int J Mol Sci. 2023;24(9):8144. [DOI:10.3390/ijms24098144]
5. Van Der Valk J, Bieback K, Buta C, Cochrane B, Dirks W, Fu J, et al. Fetal bovine serum (FBS): past-present-future. Altex. 2018;35(1):99-118. [DOI:10.14573/altex.1705101]
6. Hesler M, Kohl Y, Wagner S, von Briesen H. Non-pooled human platelet lysate: A potential serum alternative for in vitro cell culture. Altern Lab Anim. 2019;47(3-4):116-27. [DOI:10.1177/0261192919882516]
7. Kim YJ, Han SK, Yoon S, Kim CW. Rich production media as a platform for CHO cell line development. AMB Express. 2020;10(1):1-13. [DOI:10.1186/s13568-020-01025-3]
8. Baker M. Reproducibility: Respect your cells! Nature. 2016;537(7620):433-5. [DOI:10.1038/537433a]
9. Chelladurai KS, Christyraj JDS, Rajagopalan K, Yesudhason BV, Venkatachalam S, Mohan M, et al. Alternative to FBS in animal cell culture-An overview and future perspective. Heliyon. 2021;7(8): e07686. [DOI:10.1016/j.heliyon.2021.e07686]
10. Beltran Paschoal JF, Patiño SS, Bernardino T, Rezende A, Lemos M, Pereira CA, Calil Jorge SA. Adaptation to serum-free culture of HEK 293T and Huh7.0 cells. BMC Proc. 2014;8:259. [DOI:10.1186/1753-6561-8-S4-P259]
11. Biaggio RT, Abreu-Neto MS, Covas DT, Swiech K. Serum-free suspension culturing of human cells: adaptation,growth,and cryopreservation. Bioprocess Biosyst Eng. 2015;38:1495-507. [DOI:10.1007/s00449-015-1392-9]
12. Shridhar S, Klanert G, Auer N, Hernandez-Lopez I, Kańduła MM, Hackl M, et al. Transcriptomic changes in CHO cells after adaptation to suspension growth in protein-free medium analysed by a species-specific microarray. J Biotechnol. 2017;257:13-21. [DOI:10.1016/j.jbiotec.2017.03.012]
13. Rodrigues ME, Costa AR, Henriques M, Cunnah P, Melton DW, Azeredo J, Oliveira R. Advances and drawbacks of the adaptation to serum-free culture of CHO-K1 cells for monoclonal antibody production. Appl Biochem Biotechnol. 2013;169(4):1279-91. [DOI:10.1007/s12010-012-0068-z]
14. Jukić S, Bubenik D, Pavlović N, Tušek AJ, Srček VG. Adaptation of CHO cells in serum-free conditions for erythropoietin production: Application of EVOP technique for process optimization. Biotechnol Appl Biochem. 2016;63(5):633-41. [DOI:10.1002/bab.1468]
15. Rourou S, Ben Zakkour M, Kallel H. Adaptation of Vero cells to suspension growth for rabies virus production in different serum free media. Vaccine. 2019;37(47):6987-95. [DOI:10.1016/j.vaccine.2019.05.092]
16. Wang P, Huang S, Hao Ch, Wang Zh, Zhao H, Liu M, et al. Establishment of a suspension MDBK cell line in serum-free medium for production of bovine Alphaherpesvirus-1. Vaccine. 2021;9(9):1006. [DOI:10.3390/vaccines9091006]
17. Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. MAbs. 2010;(5):466-77. [DOI:10.4161/mabs.2.5.12720]
18. Torres M, Zuniga R, Gutierrez M, Vergara M, Collazo N, Reyes J, et al. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFalpha production in CHO cells. Plos one. 2018;13(3):e0194510. [DOI:10.1371/journal.pone.0194510]
19. Torkashvand F, Vaziri B, Maleknia S, Heydari A, Vossoughi M, Davami F, Mahboudi F. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody. Plos one. 2015;10(10):e0140597. [DOI:10.1371/journal.pone.0140597]
20. Torres M, Dickson AJ. Combined gene and environmental engineering offers a synergetic strategy to enhance r-protein production in Chinese hamster ovary cells. Biotechnol Bioeng. 2022;119(2):550-65. [DOI:10.1002/bit.28000]
21. Gyorgypal A, Fratz-Berilla E, Kohnhorst C, Powers DN, Chundawat SPS. Temporal effects of galactose and manganese supplementation on monoclonal antibody N-linked glycosylation infed-batch and perfusion bioreactor operation. Biorxiv. 2023; Doi: 10.1101/2023.04.15.535602. [DOI:10.1101/2023.04.15.535602]
22. Lomba ALO, Tirapelle MC, Biaggio RT, Abreu-Neto MS, Covas DT, Picanço-Castro V, et al. Serum-free suspension adaptation of HEK-293T cells: Basis for large-scale biopharmaceutical production. Braz Arch Biol Technol. 2021; DOI:10.1590/1678-4324-2021200817. [DOI:10.1590/1678-4324-2021200817]
23. Li Y. Effective strategies for host cell protein clearance in downstream processing of monoclonal antibodies and Fc-fusion proteins. Protein Expr Purif. 2017;134:96-103. [DOI:10.1016/j.pep.2017.04.006]
24. Sha S, Yoon S. An investigation of nucleotide sugar dynamics under the galactose supplementation in CHO cell culture. Process Biochem. 2019;81:165-74. [DOI:10.1016/j.procbio.2019.03.020]
25. Cha HM, Lim JH, Lee KS, Kim DI. Nucleotide sugar precursor feeding strategy to enhance sialylation of albumin-erythropoietin in CHO cell cultures. Process Biochem. 2018;66:197-204. [DOI:10.1016/j.procbio.2017.12.014]
26. Liu J, Wang J, Fan L, Chen X, Hu D, Deng X, et al. Galactose supplementation enhance sialylation of recombinant Fc-fusion protein in CHO cell: an insight into the role of galactosylation in sialylation. World J Microbiol Biotechnol. 2015;31(7):1147-56. [DOI:10.1007/s11274-015-1864-8]
27. Ehret J, Zimmermann M, Eichhorn T, Zimmer A. Impact of cell culture media additives on IgG glycosylation produced in Chinese hamster ovary cells. Biotechnol Bioeng. 2019;116(4):816-30. [DOI:10.1002/bit.26904]
28. McHugh KP, Xu J, Aron KL, Borys MC, Li ZJ. Effective temperature shift strategy development and scale confirmation for simultaneous optimization of protein productivity and quality in Chinese hamster ovary cells. Biotechnol Prog. 2020;36(3):e2959. [DOI:10.1002/btpr.2959]
29. Toronjo-Urquiza L, Acosta-Martin AE, James DC, Nagy T, Falconer RJ. Resveratrol addition to Chinese hamster ovary cell culture media: The effect on cell growth, monoclonal antibody synthesis, and its chemical modification. Biotechnol Prog. 2020;36(3):e2940. [DOI:10.1002/btpr.2940]
30. Avello V, Torres M, Vergara M, Berrios J, Valdez-Cruz NA, Acevedo C, et al. Enhanced recombinant protein production in CHO cell continuous cultures under growth-inhibiting conditions is associated with an arrested cell cycle in G1/G0 phase. Plos one. 2022;17(11):e0277620. [DOI:10.1371/journal.pone.0277620]
31. Avello V, Tapia B, Vergara M, Acevedo C, Berrios J, Reyes JG, Altamirano C. Impact of sodium butyrate and mild hypothermia on metabolic and physiological behaviour of CHO TF 70R cells. Electron J Biotechnol. 2017;27:55-62. [DOI:10.1016/j.ejbt.2017.03.008]
32. Chen F, Kou T, Fan L, Zhou Y, Ye Zh, Zhao L, Tan W-S. The combined effect of sodium butyrate and low culture temperature on the production, sialylation, and biological activity of an antibody produced in CHO cells. Biotechnol Bioprocess Eng. 2011;16:1157-65. [DOI:10.1007/s12257-011-0069-8]
33. Jiang Zh, Sharfstein ST. Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng. 2008;100(1):189-94. [DOI:10.1002/bit.21726]
34. Liu Y, Zhou X, Song Zh, Zhang Y. Sodium butyrate enhances the acidic isoform content of recombinant human erythropoietin produced by Chinese hamster ovary cells. Biotechnol Lett. 2014;36(5):907-11. [DOI:10.1007/s10529-013-1442-9]
35. Ghafuri-Esfahani A, Shokri R, Sharifi A, Shafiee L, Khosravi R, Kaghazian H, Khalili M. Optimization of parameters affecting on CHO cell culture producing recombinant erythropoietin. Prep Biochem Biotechnol. 2020;50(8):834-41. [DOI:10.1080/10826068.2020.1753072]
36. Arnold S, Jelinek N. FSH producing cell clone. Google Patents; 2012. Available from: https://patents.google.com/patent/AU2008267138B9/nl
37. Kim D-J, Seok S-H, Baek M-W, Lee H-Y, Juhn J-H, Lee S, et al. Highly expressed recombinant human follicle-stimulating hormone from Chinese hamster ovary cells grown in serum-free medium and its effect on induction of folliculogenesis and ovulation. Fertil Steril. 2010;93(8):2652-60. [DOI:10.1016/j.fertnstert.2009.05.009]
38. Orlova NA, Kovnir SV, Khodak YA, Polzikov MA, Nikitina VA, Skryabin KG, Vorobiev II. High-level expression of biologically active human follicle stimulating hormone in the Chinese hamster ovary cell line by a pair of tricistronic and monocistronic vectors. Plos one. 2019;14(7):e0219434. [DOI:10.1371/journal.pone.0219434]
39. Xing Z, Kenty BM, Li ZJ, Lee SS. Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Biotechnol Bioeng. 2009;103(4):733-46. [DOI:10.1002/bit.22287]
40. Goey CH, Bell Dj, Kontoravdi C. CHO cell cultures in shake flasks and bioreactors present different host cell protein profiles in the supernatant. Biology Eng J. 2019;144:185-92. [DOI:10.1016/j.bej.2019.02.006]
41. Qian Y, Xing Z, Lee Sh, Mackin NA, He A, Kayne PS, et al. Hypoxia influences protein transport and epigenetic repression of CHO cell cultures in shake flasks. Biotechnol J. 2014;9(11):1413-24. [DOI:10.1002/biot.201400315]
42. Ahleboot Z, Khorshidtalab M, Motahari P, Mahboudi R, Arjmand R, Mokarizadeh A, Maleknia Sh. Designing a Strategy for pH Control to Improve CHO Cell Productivity in Bioreactor. Avicenna J Med Biotechnol. 2021;13(3):123-30. [DOI:10.18502/ajmb.v13i3.6365]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb