Volume 28, Issue 2 And 3 (3-2024)                   IBJ 2024, 28(2 And 3): 132-139 | Back to browse issues page

Ethics code: IR.PII.REC.1399.045

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Teflischi Gharavi A, Niknejad A, Irian S, Rahimi A, Salimi M. Polyethylene Glycol-Mediated Exosome Isolation: A Method for Exosomal RNA Analysis. IBJ 2024; 28 (2 and 3) :132-139
URL: http://ibj.pasteur.ac.ir/article-1-4129-en.html
Background: Exosomal RNAs (ExoRNAs) offer valuable insights into their cellular origin. ExoRNA studies were faced with challenges in obtaining sufficient amounts of high-quality RNA. Herein, we aimed to compare three traditional exosome isolation methods to introduce an appropriate strategy to extract RNA from cancer-derived exosomes for further RNA analysis.
Methods: Exosomes were isolated through ultracentrifugation, precipitation kit, and size exclusion column chromatography, and then characterized by dynamic light scattering and transmission electron microscopy, followed by extracting total RNA. The quality and quantity of the extracted RNAs were assessed by a NanoDrop and 2.5% agarose gel electrophoresis.
Results: Extracted exosomes displayed a similar range of size and morphology. We found that polyethylene glycol-precipitation method resulted in a higher RNA yield with a 260/280 ratio of 1.9. The obtained exoRNA appeared as a smear in the agarose gel, indicative of small exoRNAs.
Conclusion: We provide researchers a suitable approach to isolate exosomes based on yield and purity of exoRNA.


1. Luo L, Wu Z, Wang Y, Li H. Regulating the production and biological function of small extracellular vesicles: current strategies, applications and prospects. J Nanobiotechnol. 2021; 19(1):422. [DOI:10.1186/s12951-021-01171-1]
2. Zhao Z, Zhao G, Yang S, Zhu S, Zhang S, Li P. The significance of exosomal RNAs in the development, diagnosis, and treatment of pancreatic cancer. Cancer Cell Int. 2021; 21(1):364. [DOI:10.1186/s12935-021-02059-8]
3. Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ, Chen H. Exosomal RNAs: Novel potential biomarkers for diseases-A review. Int J Mol Sci. 2022; 23(5):2461 [DOI:10.3390/ijms23052461]
4. Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The efects of ionising and non-ionising electromagnetic radiation on extracellular matrix proteins. Cells. 2021; 10(11):3041. [DOI:10.3390/cells10113041]
5. Loconte L, Arguedas D, El R, Zhou A, Chipont A, Guyonnet L, et al. Detection of the interactions of tumour derived extracellular vesicles with immune cells is dependent on EV-labelling methods. J Extracell Vesicles. 2023; 12(12):12384. [DOI:10.1002/jev2.12384]
6. Zimta AA, Sigurjonsson OE, Gulei D, Tomuleasa C. The malignant role of exosomes as nanocarriers of rare RNA species. Int J Mol Sci. 2020; 21(16): 5866. [DOI:10.3390/ijms21165866]
7. Zamboni C, Zamarian V, Stefanello D, Ferrari R, Auletta L, Milanesi S, et al. Plasma small extracellular vesicles from dogs affected by cutaneous mast cell tumors deliver high levels of miR-21-5p. Front Vet Sci. 2022; 9:1083174. [DOI:10.3389/fvets.2022.1083174]
8. Vaher H, Runnel T, Urgard E, Aab A, Carreras Badosa G, Maslovskaja J, et al. miR-10a-5p is increased in atopic dermatitis and has capacity to inhibit keratinocyte proliferation. Allergy. 2019; 74(11):2146-56. [DOI:10.1111/all.13849]
9. Dilsiz N. Role of exosomes and exosomal microRNAs in cancer. Future Sci OA. 2020 26;6(4):Fso465. [DOI:10.2144/fsoa-2019-0116]
10. Menon A, Abd-Aziz N, Khalid K, Poh CL, Naidu R. miRNA: A promising therapeutic target in cancer. Int J Mol Sci. 2022; 23(19): 11502. [DOI:10.3390/ijms231911502]
11. Li C, Zhou T, Chen J, Li R, Chen H, Luo S, et al. The role of exosomal miRNAs in cancer. J Transl Med. 2022; 20(1):6. [DOI:10.1186/s12967-021-03215-4]
12. Aseervatham J. Dynamic role of exosome microRNAs in cancer cell signaling and their emerging role as noninvasive biomarkers. Biology. 2023; 12(5):710. [DOI:10.3390/biology12050710]
13. Eldh M, Lötvall J, Malmhäll C, Ekström K. Importance of RNA isolation methods for analysis of exosomal RNA: Evaluation of different methods. Mol Immunol. 2012; 50(4):278-86. [DOI:10.1016/j.molimm.2012.02.001]
14. Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024; 13(2):e12404. [DOI:10.1002/jev2.12451]
15. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015; 4:27031. [DOI:10.3402/jev.v4.27031]
16. Patel GK, Khan MA, Zubair H, Srivastava SK, Khushman Md, Singh S, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019; 9(1):5335. [DOI:10.1038/s41598-019-41800-2]
17. García-Romero N, Madurga R, Rackov G, Palacín-Aliana I, Núñez-Torres R, Asensi-Puig A, et al. Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation. J Transl Med. 2019; 17(1):75. [DOI:10.1186/s12967-019-1825-3]
18. Shieh TM, Tseng YH, Hsia SM, Wang TH, Lan WC, Shih YH. Optimization protocol of the PEG-based method for OSCC-derived exosome isolation and downstream applications. Separations. 2022; 9(12):435. [DOI:10.3390/separations9120435]
19. Rider MA, Hurwitz SN, Meckes DG. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Scientific Reports. 2016; 6(1):23978. [DOI:10.1038/srep23978]
20. Andrianov AK. Noncovalent PEGylation of protein and peptide therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023; 15(5):e1897. [DOI:10.1002/wnan.1897]
21. Prendergast EN, de Souza Fonseca MA, Dezem FS, Lester J, Karlan BY, Noushmehr H, et al. Optimizing exosomal RNA isolation for RNA-Seq analyses of archival sera specimens. PLoS One. 2018; 13(5):e0196913. [DOI:10.1371/journal.pone.0196913]
22. Naseri Z, Oskuee RK, Jaafari MR, Forouzandeh Moghadam M. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine. 2018; 13:7727-47. [DOI:10.2147/IJN.S182384]
23. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles. 2014; 3:26913. [DOI:10.3402/jev.v3.26913]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb