Volume 28, Issue 2 And 3 (3-2024)                   IBJ 2024, 28(2 And 3): 120-131 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Albadawy A, Alqudaimi M, Cui H, Yan X, Sun J, Shi P. Identification of Hydroxysteroid Dehydrogenase Type 1 As a Potential Bladder Tumor Marker. IBJ 2024; 28 (2 and 3) :120-131
URL: http://ibj.pasteur.ac.ir/article-1-4068-en.html
Abstract:  
Background: The 17beta-hydroxysteroid dehydrogenase type 1 (HSD17B) family has been implicated in the prognosis and treatment prediction of various malignancies; however, its association with bladder cancer (BLCA) remains unclear. This study aimed to evaluate the potential of HSD17B1, as a prognostic biomarker, for the survival of patients with BLCA and to determine its effectiveness as a supplemental biomarker for BLCA.
Methods: A series of bioinformatics techniques were applied to investigate the expression of HSD17B1 in different types of cancer and its potential association with the prognosis of BLCA patients using diverse databases. The UALCAN, Human Protein Atlas, cBioPortal, Metascape, GEPIA, MethSurv, and TIMER were employed to analyze expression differences, mutation status, enrichment analysis, overall survival, methylation, and immune-infiltrating cells. The real-time reverse transcription-PCR (qRT-PCR) was implemented to detect the messenger ribonucleic acid (mRNA) expression levels of HSD17B1 in vitro.
Results: Elevated mRNA and protein levels of HSD17B1, surpassing normal levels, were observed in BLCA samples. In addition, the BLCA patients with higher mRNA expression level of HSD17B1 significantly reduced the overall survival. Also, several immune infiltrating cells, including mast cell resting CIBERSORT-ABS, have been identified as tumor-associated biomarker genes, with the potential to significantly influence the immunological environment. Finally, qRT-PCR analysis revealed a significant upregulation of HSD17B1 mRNA expression level in the cancer cells compared to the human 293T cells, which was consistent with the bioinformatics data.
Conclusion: There is a strong correlation between the elevated HSD17B1 expression and positive prognosis in patients with BLCA. Therefore, HSD17B1 can be used as a prognostic biomarker in these patients.

 
Type of Study: Full Length/Original Article | Subject: Cancer Biology

References
1. Halaseh SA, Halaseh S, Alali Y, Ashour ME, Alharayzah MJ, Alharayzeh MJ. A review of the etiology and epidemiology of bladder cancer: All you need to know. Cureus 2022; 14(7):e27330. [DOI:10.7759/cureus.27330]
2. Bouchelouche K. PET/CT in bladder cancer: an update. Semin Nucl Med. 2022; 52(4):475-85. [DOI:10.1053/j.semnuclmed.2021.12.004]
3. Dobruch J, Oszczudłowski M. Bladder cancer: current challenges and future directions. Medicina (Kaunas). 2021; 57(8): 749. [DOI:10.3390/medicina57080749]
4. Hilborn E, Stål O, Jansson A. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget 2017; 8(18): 30552-62. [DOI:10.18632/oncotarget.15547]
5. Moeller G, Adamski J. Integrated view on 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol. 2009; 301(1-2): 7-19. [DOI:10.1016/j.mce.2008.10.040]
6. Wang J, Xiao Y, Yu Q, Zhang C. HSD17B1 could serve as a prognostic biomarker for urinary bladder patients. Asian J Surg. 2023; 46(11):5379-81. [DOI:10.1016/j.asjsur.2023.07.088]
7. Saloniemi T. Role of human hydroxysteroid (17beta) dehydrogenase type 1 (HSD17B1) in steroid-dependent diseases in females-novel indications for HSD17B1 inhibitors. Phenotypic analysis of transgenic mice overexpressing human HSD17B1. 2009; Available from: https://www.utupub.fi/bitstream/handle/10024/47016/AnnalesD867%20Saloniemi. pdf?sequence=1.
8. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJC, Ponce-Rodriguez I, Chakravarthi BVSK, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 2017; 19(8):649-58. [DOI:10.1016/j.neo.2017.05.002]
9. Digre A, Lindskog C. The human protein atlas-spatial localization of the human proteome in health and disease. Protein Science 2021; 30(1): 218-233. [DOI:10.1002/pro.3987]
10. Brunner M, Mullen L, Jauk F, Oliver J, Cayol F, Minata J, et al. Automatic integration of clinical and genetic data using cBioPortal. Stud Health Technol Inform. 2022; 290: 799-803 [DOI:10.3233/SHTI220189]
11. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10(1): 1523. [DOI:10.1038/s41467-019-09234-6]
12. Yang R, Guo J, Lin Z, Song H, Feng Z, Ou Y, et al. The combination of two‐dimensional and three‐dimensional analysis methods contributes to the understanding of glioblastoma spatial heterogeneity. J Biophotonics. 2020; 13(2):e201900196. [DOI:10.1002/jbio.201900196]
13. Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018; 10(3): 277-88. [DOI:10.2217/epi-2017-0118]
14. Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 2021; 56(10): 1363-93. [DOI:10.1016/j.devcel.2021.04.013]
15. Liu Q, Luo Q, Halim A, Song G. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer. Cancer Lett. 2017; 401: 39-45. [DOI:10.1016/j.canlet.2017.05.002]
16. Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, et al. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (2020). 2021; 2(1): 27-59. [DOI:10.1002/mco2.27]
17. Cheng H, Wang M, Su J, Li Y, Long J, Chu J, et al. Lipid metabolism and cancer. Life (Basel). 2022; 12(6): 784. [DOI:10.3390/life12060784]
18. Castaneda PR, Theodorescu D, Rosser CJ, Ahdoot M. Identifying novel biomarkers associated with bladder cancer treatment outcomes. Front Oncol. 2023; 13: 1114203. [DOI:10.3389/fonc.2023.1114203]
19. Doshi B, Athans SR, Woloszynska A. Biological differences underlying sex and gender disparities in bladder cancer: current synopsis and future directions. Oncogenesis. 2023; 12(1):44. [DOI:10.1038/s41389-023-00489-9]
20. Li HT, Duymich CE, Weisenberger DJ, Liang G. Genetic and epigenetic alterations in bladder cancer. Int Neurourol J. 2016; 20(Suppl 2):S84-94. [DOI:10.5213/inj.1632752.376]
21. Yang YY, Hong SY, Xun Y, Liu CQ, Sun JX, Xu JZ, et al. Characterization of the Lipid Metabolism in Bladder Cancer to Guide Clinical Therapy. J Oncol. 2022; 2022:7679652. [DOI:10.1155/2022/7679652]
22. Mindnich R, Moller G, Adamski J. The role of 17 beta-hydroxysteroid dehydrogenases. Mol Cell Endocinol. 2018; 1-2:7-20. [DOI:10.1016/j.mce.2003.12.006]
23. Zhu K, Xiaoqiang L, Deng W, Wang G, Fu B. Development and validation of a novel lipid metabolism-related gene prognostic signature and candidate drugs for patients with bladder cancer. Lipids Health Dis. 2021; 20:1Article number 146. [DOI:10.1186/s12944-021-01554-1]
24. Rawłuszko AA, Horbacka K, Krokowicz P, Jagodziński PP. Decreased expression of 17β-hydroxysteroid dehydrogenase type 1 is associated with DNA hypermethylation in colorectal cancer located in the proximal colon. BMC cancer. 2011; 11:Article number 522. [DOI:10.1186/1471-2407-11-522]
25. Bhavani V, Srinivasulu M, Ahuja Y, Hasan Q. Role of BRCA1, HSD17B1 and HSD17B2 methylation in breast cancer tissue. Cancer Biomark. 2009; 5(4):207-13. [DOI:10.3233/CBM-2009-0105]
26. Ghersevich S, Poutanen M, Martikainen H, Vihko R. Expression of 17β-hydroxysteroid dehydrogenase in human granulosa cells: correlation with follicular size, cytochrome P450 aromatase activity and oestradiol production. J Endocrinol. 1994; 143(1):139-50. [DOI:10.1677/joe.0.1430139]
27. Tremblay Y, Ringler G, Morel Y, Mohandas T, Labrie F, Strauss JFr, et al. Regulation of the gene for estrogenic 17-ketosteroid reductase lying on chromosome 17cen→ q25. J Biol Chem. 1989; 264(34): 20458-62. [DOI:10.1016/S0021-9258(19)47083-X]
28. Fournet-Dulguerov N, Maclusky NJ, Leranth CZ, Todd R, Mendelson CR, Simpson ER, et al. Immunohistochemical localization of aromatase cytochrome P-450 and estradiol dehydrogenase in the syncytiotrophoblast of the human placenta. J Clin Endocrinol Metab. 1987; 65(4): 757-64. [DOI:10.1210/jcem-65-4-757]
29. Miettinen MM, Mustonen MV, Poutanen MH, Isomaa VV, Vihko RK. Human 17 β-hydroxysteroid dehydrogenase type 1 and type 2 isoenzymes have opposite activities in cultured cells and characteristic cell-and tissue-specific expression. Biochem J. 1996; 314(Pt3): 839-45. [DOI:10.1042/bj3140839]
30. Dassen H, Punyadeera C, Kamps R, Delvoux B, Van Langendonckt A, Donnez J, et al. Estrogen metabolizing enzymes in endometrium and endometriosis. Hum Reprod. 2007; 22(12): 3148-58. [DOI:10.1093/humrep/dem310]
31. Oduwole OO, Li Y, Isomaa VV, Mäntyniemi A, Pulkka AE, Soini Y, et al. 17β-Hydroxysteroid dehydrogenase type 1 is an independent prognostic marker in breast cancer. Cancer Res. 2004; 64(20): 7604-9. [DOI:10.1158/0008-5472.CAN-04-0446]
32. Drzewiecka H, Jagodzinski PP. Conversion of estrone to 17-beta-estradiol in human non-small-cell lung cancer cells in vitro. Biomed Pharmacother. 2012; 66(7): 530-4. [DOI:10.1016/j.biopha.2012.02.006]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb