Volume 28, Issue 2 And 3 (3-2024)                   IBJ 2024, 28(2 And 3): 71-81 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shah S S, Turakhia B P, Purohit N, Kapadiya K M, Sahoo C R, Prajapati A. Facile Green Synthesis of Iron Oxide Nanoparticles and Their Impact on Cytotoxicity, Antioxidative Properties and Bactericidal Activity. IBJ 2024; 28 (2 and 3) :71-81
URL: http://ibj.pasteur.ac.ir/article-1-4061-en.html
Background: Bioreductive processes are quite potent, effective and affordable for the synthesis of green nanoparticles (NPs), as compared to the physical and chemical methods. The present study aimed to evaluate the bactericidal, antioxidative and anticancer activity of turmeric rhizome-iron oxide nanoparticles (FeONPs) derived from the turmeric rhizome (Curcuma amada) using ferric chloride as a precursor.
Methods: With focusing on the manufacture of FeONPs via  green approach, we characterized the NPs using FTIR, FT-Vis, DLS, and UV-Vis spectroscopy. The produced particles were tested for antibacterial, antioxidant, and anticancer properties. The synthesized NPs were also examined using the MDA-MB-231 human epithelial breast cancer cell line and NCI-60 cancer cell lines.
Results: The antioxidant activity of TR-FeONPs was concentration-dependent. The scavenging activity of TR-FeONPs was 76.09% at a concentration of 140 µg/ml. Using different concentrations of TR-FeONPs in the MTT assay against the MDA-MB-231 cell line indicated a reduction of less than 50% in cell viability at 125 µg/ml. Moreover, TR-FeONPs exhibited an effective bactericidal property. The gTR-FeONPs synthesized bioreductively were found to be effective in renal cancer, UO-31 cell line, with GI50 value of 66.64%.  
Conclusion: Our study showcases a sustainable method based on green chemistry principles to produce FeONPs utilizing turmeric rhizome. We anticipate that the FeONPs produced through this biosynthesis process could serve as a promising drug delivery system in cancer treatment
and as an effective antimicrobial agent against various diseases.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

1. Raveendran P, Fu J, Wallen SL. A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem. 2006; 8(1):34-8. [DOI:10.1039/B512540E]
2. Prasen V, Sejal S. Nanocarbons‐mediated water purification: an application towards wastewater treatment. J Water Environ Nanotechnol. 2020; 25:57-99. [DOI:10.1002/9781119641353.ch3]
3. Ghosh S, Shah S, Webster TJ. Recent trends in fungal biosynthesis of nanoparticles. Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology. 2021; 3:40352. [DOI:10.1016/B978-0-12-821734-4.00018-6]
4. Turakhia B, Divakara MB, Santosh MS, Shah S. Green synthesis of copper oxide nanoparticles: a promising approach in the development of antibacterial textiles. J Coat Technol Res. 2020 Mar;17(3):1-10. [DOI:10.1007/s11998-019-00303-5]
5. Meyer MH, Stehr M, Bhuju S, Krause HJ, Hartmann M, Miethe P, Singh M, Keusgen M. Magnetic biosensor for the detection of Yersinia pestis. J Microbiol Methods. 2007; 68(2):218-24. [DOI:10.1016/j.mimet.2006.08.004]
6. Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020; 34(1):11-26. [DOI:10.1007/s40259-019-00392-z]
7. Handali S, Moghimipour E, Rezaei M, Saremy S, Dorkoosh FA. Co-delivery of 5-fluorouracil and oxaliplatin in novel poly (3-hydroxybutyrate-co-3-hydroxyvalerate acid)/poly (lactic-co-glycolic acid) nanoparticles for colon cancer therapy. Int J Biol Macromol. 2019; 124:1299-311. [DOI:10.1016/j.ijbiomac.2018.09.119]
8. Lo Cascio F, Marzullo P, Kayed R, Palumbo Piccionello A. Curcumin as scaffold for drug discovery against neurodegenerative diseases. Biomedicines. 2021; 9(2):173. [DOI:10.3390/biomedicines9020173]
9. Contardi M, Heredia Guerrero JA, Guzman Puyol S, Summa M, Benítez JJ, Goldoni L, et al. Combining dietary phenolic antioxidants with polyvinylpyrrolidone: transparent biopolymer films based on p-coumaric acid for controlled release. J Mater Chem B. 2019; 7(9):1384-96. [DOI:10.1039/C8TB03017K]
10. Tanase C, Berta L, Coman NA, Roșca I, Man A, Toma F, et al. Investigation of in vitro antioxidant and antibacterial potential of silver nanoparticles obtained by biosynthesis using beech bark extract. Antioxidants. 2019; 8(10):459. [DOI:10.3390/antiox8100459]
11. Inbathamizh L, Ponnu TM, Mary EJ. In vitro evaluation of antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles. J Pharm Res. 2013; 6(1):32-8. [DOI:10.1016/j.jopr.2012.11.010]
12. Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M, Singaravelu G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 2013; 4:91-8. [DOI:10.1007/s12645-013-0040-9]
13. Wang S, Zhou S, Tao Y, Tsui WG, Ye J, Yu JZ, et al. Organic peroxides and sulfur dioxide in aerosol: source of particulate sulfate. Environmental science and technology. 2019; 53(18):10695-704. [DOI:10.1021/acs.est.9b02591]
14. Mehmood A, Murtaza G, Bhatti TM, Kausar R. Phyto-mediated synthesis of silver nanoparticles from Melia azedarach L. leaf extract: characterization and antibacterial activity. Arab J Chem. 2017; 10:S3048-53. [DOI:10.1016/j.arabjc.2013.11.046]
15. Saif S, Tahir A, Chen Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 2016; 6(11):209. [DOI:10.3390/nano6110209]
16. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER. Treatment technologies for emerging contaminants in water: A review. J Chem Eng. 2017; 323:361-80. [DOI:10.1016/j.cej.2017.04.106]
17. Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, et al. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. J Chem Eng. 2011; 172(1):258-66. [DOI:10.1016/j.cej.2011.05.103]
18. Naseem T, Farrukh MA. Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem. 2015; 2015. [DOI:10.1155/2015/912342]
19. Birusanti AB, Mallavarapu U, Nayakanti D, Espenti CS. Plant-mediated ZnO nanoparticles using Ficus racemosa leaf extract and their characterization, antibacterial activity. Asian J Pharm Clin Res. 2018; 11(9):463-7. [DOI:10.22159/ajpcr.2018.v11i9.28084]
20. Sivaraj R, Rahman PK, Rajiv P, Salam HA, Venckatesh R. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta Mol Biomol Spectrosc. 2014; 133:178-81. [DOI:10.1016/j.saa.2014.05.048]
21. Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL, et al. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res. 2013; 73(14):4372-82. [DOI:10.1158/0008-5472.CAN-12-3342]
22. Chung IM, Rahuman AA, Marimuthu S, et al. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med. 2017; 14(1):18-24. [DOI:10.3892/etm.2017.4466]
23. Shah S, Sahoo CR, Padhy RN. Recent trends of viral nanotechnology: an overview. Nanotechnology and In Silico Tools. 2024:31-45. [DOI:10.1016/B978-0-443-15457-7.00012-5]
24. Gottimukkala KS, Harika RP, Zamare D. Green synthesis of iron nanoparticles using green tea leaves extract. J Nanomed Biother Discov. 2017; 7:1.
25. Turakhia B, Chikkala S, Shah S. Novelty of bioengineered iron nanoparticles in nanocoated surgical cotton: a green chemistry. Adv Pharmacol Sci. 2019; 2019:9825969. [DOI:10.1155/2019/9825969]
26. Pawar H, Karde M, Mundle N, Jadhav P, Mehra K. Phytochemical evaluation and curcumin content determination of turmeric rhizomes collected from Bhandara District of Maharashtra (India). Med Chem. 2014; 4(8):588-91. [DOI:10.4172/2161-0444.1000198]
27. Vallabani NS, Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech. 2018; 8(6):279. [DOI:10.1007/s13205-018-1286-z]
28. Qi L, Xu Z, Jiang X, Li Y, Wang M. Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett. 2005; 15(5):1397-9. [DOI:10.1016/j.bmcl.2005.01.010]
29. Sankar R, Rahman PK, Varunkumar K, Anusha C, Kalaiarasi A, Shivashangari KS, Ravikumar V. Facile synthesis of Curcuma longa tuber powder engineered metal nanoparticles for bioimaging applications. J Mol Struct. 2017;1129:8-16. [DOI:10.1016/j.molstruc.2016.09.054]
30. Turakhia B, Turakhia P, Shah S. Green synthesis of zero valent iron nanoparticles from Spinacia oleracea (spinach) and its application in waste water treatment. Availabe at https://api.semanticscholar.org/CorpusID: 202683231.
31. Neupane BP, Chaudhary D, Paudel S, Timsina S, Chapagain B, Jamarkattel N, et al. Himalayan honey loaded iron oxide nanoparticles: Synthesis, characterization and study of antioxidant and antimicrobial activities. Int J Nanomedicine. 2019; 15:3533-41. [DOI:10.2147/IJN.S196671]
32. Patel A, Shah S. Nano Bio-Edible Fruit Coating by Using Carica Papaya Leaf Extracts. 2023; DOI:10.1109/ NANO58406.2023.10231279. [DOI:10.1109/NANO58406.2023.10231279]
33. Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine. 2014; 9:2479-88. [DOI:10.2147/IJN.S59661]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb