Volume 28, Issue 2 And 3 (3-2024)                   IBJ 2024, 28(2 And 3): 102-112 | Back to browse issues page

Ethics code: IR.PII.AEC.1402.016


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimzadeh Barenji E, Beglari S, Tahghighi A, Azerang P, Rohani* M. Evaluation of Anti-Bacterial and Anti-Biofilm Activity of Native Probiotic Strains of Lactobacillus Extracts. IBJ 2024; 28 (2 and 3) :102-112
URL: http://ibj.pasteur.ac.ir/article-1-4043-en.html
Abstract:  
Background: Lactic acid bacteria produce various beneficial metabolites, including antimicrobial agents. Owing to the fast-rising antibiotic resistance among pathogenic microbes, scientists are exploring antimicrobials beyond antibiotics. In this study, we examined four Lactobacillus strains, namely L. plantarum 42, L. brevis 205, L. rhamnosus 239, and L. delbrueckii 263, isolated from healthy human microbiota, to evaluate their antibacterial and antifungal activity.
Methods: Lactobacillus strains were cultivated, and the conditioned media were obtained. The supernatant was then used to treat pathogenic bacteria and applied to the growth media containing fungal and bacterial strains. Additionally, the supernatant was separated to achieve the organic and aqueous phases. The two phases were then examined in terms of bacterial and fungal growth rates. Disk diffusion and MIC tests were conducted to determine strains with the most growth inhibition potential. Finally, the potent strains identified through the MIC test were tested on the pathogenic microorganisms to assess their effects on the formation of pathogenic biofilms.
Results: The organic phase of L. rhamnosus 239 extracts exhibited the highest antibacterial and antibiofilm effects, while that of L. brevis 205 demonstrated the most effective antifungal impact, with a MIC of 125 µg/mL against Saccharomyces cerevisiae.
Conclusion: This study confirms the significant antimicrobial impacts of the lactic acid bacteria strains on pathogenic bacteria and fungi; hence, they could serve as a reliable alternative to antibiotics for a safe and natural protection against pathogenic microorganisms.

 

References
1. Meng LX, Sun YJ, Zhu L, Lin ZJ, Shuai XY, Zhou ZC, et al. Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. Sci Total Environ. 2022; 15:821. [DOI:10.1016/j.scitotenv.2022.153367]
2. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. Available at: https://apo.org.au/node/63983.
3. Sabtu N, Enoch DA, Brown NM. Antibiotic resistance: what, why, where, when and how? Br Med Bull. 2015; 116:105-13. [DOI:10.1093/bmb/ldv041]
4. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019; 19(1):56-66. [DOI:10.1016/S1473-3099(18)30605-4]
5. Guidoni EBM, Berezin EN, Nigro S, Santiago NA, Benini V, Toporovski J. Antibiotic resistance patterns of pediatric community-acquired urinary infections. Braz J Infect Dis. 2008; 12(4):321-3. [DOI:10.1590/S1413-86702008000400013]
6. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001; 358(9276):135-8. [DOI:10.1016/S0140-6736(01)05321-1]
7. Maisch T. A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Rev Med Chem. 2009; 9(8):974-83. [DOI:10.2174/138955709788681582]
8. Brooun A, Liu S, Lewis KI. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2000; 44(3):640-6. [DOI:10.1128/AAC.44.3.640-646.2000]
9. Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol. 2018; 30:9:2928. [DOI:10.3389/fmicb.2018.02928]
10. Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front Microbiol. 2019; 3:10:913. [DOI:10.3389/fmicb.2019.00913]
11. Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol. 2017; 104(3):365-76. [DOI:10.1111/mmi.13634]
12. Ferrer MD, Rodriguez JC, Álvarez L, Artacho A, Royo G, Mira A. Effect of antibiotics on biofilm inhibition and induction measured by real‐time cell analysis. J Appl Microbiol. 2017; 122(3):640-50. [DOI:10.1111/jam.13368]
13. Borman AM, Muller J, Walsh-Quantick J, Szekely A, Patterson Z, Palmer MD, et al. MIC distributions for amphotericin B, fluconazole, itraconazole, voriconazole, flucytosine and anidulafungin and 35 uncommon pathogenic yeast species from the UK determined using the CLSI broth microdilution method. J Antimicrob Chemother. 2020; 75(5):1194-205. [DOI:10.1093/jac/dkz568]
14. Kosikowska U, Andrzejczuk S, Grywalska E, Chwiejczak E, Winiarczyk S, Pietras-Ożga D, et al. Prevalence of susceptibility patterns of opportunistic bacteria in line with CLSI or EUCAST among Haemophilus parainfluenzae isolated from respiratory microbiota. Sci Rep. 2020; 10:11512. [DOI:10.1038/s41598-020-68161-5]
15. Maplestone RA, Stone MJ, Williams DH. The evolutionary role of secondary metabolites-a review. Gene. 1992; 115(1-2):151-7. [DOI:10.1016/0378-1119(92)90553-2]
16. Moradali MF, Rehm BHA. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 2020; 18(4):195-210. [DOI:10.1038/s41579-019-0313-3]
17. Skariyachan S, Acharya AB, Subramaniyan S, Babu S, Kulkarni S, Narayanappa R. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: An in vitro and in silico investigation. J Biomol Struct Dyn. 2016; 34(9):1865-83. [DOI:10.1080/07391102.2015.1094412]
18. Tejero-Sariñena S, Barlow J, Costabile A, Gibson GR, Rowland I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe. 2012; 18(5):530-8. [DOI:10.1016/j.anaerobe.2012.08.004]
19. Williams NT. Probiotics. Am J Health Syst Pharm. 2010; 67(6):449-58. [DOI:10.2146/ajhp090168]
20. Lee CH, Choi Y, Seo SY, Kim SH, Kim IH, Kim SW, et al. Addition of probiotics to antibiotics improves the clinical course of pneumonia in young people without comorbidities: a randomized controlled trial. Sci Rep. 2021; 11(1):926. [DOI:10.1038/s41598-020-79630-2]
21. Papagianni M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput Struct Biotechnol J. 2012; 3(4):e201210003. [DOI:10.5936/csbj.201210003]
22. Silva CCG, Silva SPM, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Front Microbiol. 2018; 9:9:594. [DOI:10.3389/fmicb.2018.00594]
23. Bernardeau M, Vernoux JP, Henri-Dubernet S, Guéguen M. Safety assessment of dairy microorganisms: the Lactobacillus genus. Int J Food Microbiol. 2008; 126(3):278-85. [DOI:10.1016/j.ijfoodmicro.2007.08.015]
24. Herreros MA, Sandoval H, González L, Castro JM, Fresno JM, Tornadijo ME. Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a Spanish goats' milk cheese). Food Microbiol. 2005; 22(5):455-9. [DOI:10.1016/j.fm.2004.11.007]
25. Rohani M, Noohi N, Talebi M, Katouli M, Pourshafie MR. Highly heterogeneous probiotic Lactobacillus species in healthy Iranians with low functional activities. PloS one. 2015; 10(12):e0144467. [DOI:10.1371/journal.pone.0144467]
26. Devillers J, Steiman R, Seigle-Murandi F. The usefulness of the agar-well diffusion method for assessing chemical toxicity to bacteria and fungi. Chemosphere. 1989; 19(10-11):1693-700. [DOI:10.1016/0045-6535(89)90512-2]
27. Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers. 2005;80(6):717-35. [DOI:10.1002/bip.20286]
28. Thieme L, Hartung A, Tramm K, Klinger-Strobel M, Jandt KD, Makarewicz O, et al. MBEC versus MBIC: the lack of differentiation between biofilm reducing and inhibitory effects as a current problem in biofilm methodology. Biological procedures online. 2019; 21:18. [DOI:10.1186/s12575-019-0106-0]
29. Seidel, V. Initial and Bulk Extraction. In: Sarker, S.D., Latif, Z., Gray, A.I. (eds) Natural Products Isolation. Methods in Biotechnology. Humana Press; 2006. Available at: [DOI:10.1385/1-59259-955-9:2]
30. Bazireh H, Shariati P, Azimzadeh Jamalkandi S, Ahmadi A, Boroumand MA. Isolation of novel probiotic Lactobacillus and Enterococcus strains from human salivary and fecal sources. Front Microbiol. 2020;11:597946. [DOI:10.3389/fmicb.2020.597946]
31. De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol. 2007; 13(4):194-9. [DOI:10.1159/000104752]
32. Kim H, Kim Y, Kang CH. In vivo confirmation of the antimicrobial effect of probiotic candidates against Gardnerella vaginalis. Microorganisms. 2021; 9(8):1690. [DOI:10.3390/microorganisms9081690]
33. Price-Whelan A, Dietrich LE, Newman DK. Rethinking' secondary' metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol. 2006; 2(2):71-8. [DOI:10.1038/nchembio764]
34. Lin TH, Pan TM. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. J Microbiol Immunol Infect. 2019; 52(3):409-17. [DOI:10.1016/j.jmii.2017.08.003]
35. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, et al. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 2012; 135(3):1914-9. [DOI:10.1016/j.foodchem.2012.06.048]
36. Essid I, Medini M, Hassouna M. Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat. Meat Sci. 2009; 81(1):203-8. [DOI:10.1016/j.meatsci.2008.07.020]
37. Kim NN, Kim WJ, Kang SS. Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food control. 2019; 98:274-80. [DOI:10.1016/j.foodcont.2018.11.004]
38. De Giani A, Bovio F, Forcella M, Fusi P, Sello G, Di Gennaro P. Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Expr. 2019; 9:88. [DOI:10.1186/s13568-019-0813-6]
39. Ibrahim GA, Sharaf OM, Al-Gamal MS, Youssef AM, Dabiza NM, El-Ssayad MF. Extraction, evaluation and structure elucidation of bioactive metabolites of Lactobacillus helveticus CNRZ 32. Biointerface Res. Appl. Chem. 2021; 11:7677-88. [DOI:10.33263/BRIAC111.76777688]
40. Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, et al. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 2013, 57(11): 5572-9.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb