Volume 28, Issue 2 And 3 (3-2024)                   IBJ 2024, 28(2 And 3): 82-89 | Back to browse issues page

Ethics code: 513722

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahjet Kamil N, M.H. AL-Ghaban N. Evaluation of the Effects of Whey Protein and Moringa Oleifera Leaves Extract Mixture on Osseointegration in Rabbits. IBJ 2024; 28 (2 and 3) :82-89
URL: http://ibj.pasteur.ac.ir/article-1-4025-en.html
Background: Osteogenic, antioxidant and anti-inflammatory effects of Whey protein and M. oleifera gel prompted us to evaluate their role alone or in combination on osseointegration in rabbits.
Methods: In this study, 24 titanium implants were inserted in the femurs of six rabbits. One implant was placed without treatment, and another one was coated with a mixture of whey protein and M. oleifera gel for each side.  The animals were divided into two groups of 2- and 6-week intervals and evaluated using histopathological and immunohistochemical techniques.
Results: Histological evaluation revealed a significant difference between the experimental and the control groups after two weeks in osteoblast and osteocyte counts. The experimental group had mature bone development after six weeks of implantation, while the control group had a woven bone. Immunohistochemical results showed that the experimental group, compared to the control group, exhibited early positive expression of osteoblast cells at two weeks after the experiment. Based on histopathological observations, the experimental group showed a tiny area of collagenous fiber in 6th week after the implantation.
Conclusion: A mixture of whey protein and M. oleifera could accelerate osseointegration and healing processes.
Type of Study: Full Length/Original Article | Subject: Related Fields

1. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001; 10 Suppl 2(Suppl 2):S96-101. [DOI:10.1007/s005860100282]
2. Gittens RA, Olivares Navarrete R, Schwartz Z, Boyan, BD. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater. 2014; 10(8):3363-71. [DOI:10.1016/j.actbio.2014.03.037]
3. Wolfe RR. Protein supplements and exercise. Am J Clin Nutr. 2000; 72(2):551S-7S. [DOI:10.1093/ajcn/72.2.551S]
4. Kilara A, Panyam D. Peptides from milk proteins and their properties. Crit Rev Food Sci Nutr 2003; 43(6):607-33. [DOI:10.1080/10408690390251138]
5. Piccolomini A, Iskandar M., Lands L, Kubow S. High hydrostatic pressure pre-treatment of whey proteins enhances whey protein hydrolysate inhibition of oxidative stress and IL-8 secretion in intestinal epithelial cells. Food Nutr Res. 2012; 56. [DOI:10.3402/fnr.v56i0.17549]
6. Chatterton DEW, Smithers G, Roupas P, Brodkorb A. Bioactivity of β lactoglobulin and α-lactalbumin-technological implications for processing. Int Dairy J. 2006; 16(11):1229-40. [DOI:10.1016/j.idairyj.2006.06.001]
7. Kokuba H, Aurelian L, Neurath AR. 3-Hydroxyphthaloyl-β-lactoglobulin. IV antiviral activity in the mouse model of genital herpesvirus infection. Antivir Chem Chemother. 1998; 9(4):353-57. [DOI:10.1177/095632029800900407]
8. Takakura N, Wakabayashi H, Ishibashi H, Teraguchi S, Tamura Y, Yamaguchi H, et al. Oral lactoferrin treatment of experimental oral candidiasis in mice. Antimicrob Agents Chemother. 2003; 47(8): 2619-23. [DOI:10.1128/AAC.47.8.2619-2623.2003]
9. Verma AR, Vijayakumar M, Mathela CS, Rao CV. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol. 2009; 47(9):2196-201. [DOI:10.1016/j.fct.2009.06.005]
10. Sreelatha S, Padma PR. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum Nutr. 2009; 64(4):303-11. [DOI:10.1007/s11130-009-0141-0]
11. Coppin JP, Xu Y, Chen H, Min Hsiung P, Chi Tang H, Rodolfo J, et al. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J Funct Foods. 2013; 5(4):1892-99. [DOI:10.1016/j.jff.2013.09.010]
12. Tong L, Nelson N, Tsourigiannis J, Mulligan AM. The effect of prolonged fixation on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast cancer: a prospective study. Am J Surg Pathol. 2011; 35(4):545-52. [DOI:10.1097/PAS.0b013e31820e6237]
13. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008; 29(5):535-59. [DOI:10.1210/er.2007-0036]
14. Jawad MH, Al-Hijazi,AY. Histological and mechanical evaluation of the osseointegration of titanium implants by the modifications of thread design and/or coating with flaxseed (An experimental study on rabbits). J Bagh Coll Dent. 2015; 27(2):72-8. [DOI:10.12816/0015298]
15. Sugihartini N, Fajri A, Rahmawati DR. Formulation of Moringa oleifera leaf extract in lotion and gel as sunscreen. 2018. Available at: https://www.scitepress. org/PublishedPapers/2018/82410/82410.pdf. [DOI:10.5220/0008241001540158]
16. Al Molla BH, Al Ghaban N, Taher A. Immuno-histochemical evaluation: The effects of propolis on osseointegration of dental implants in rabbit's tibia. J Dent Res Rev. 2014; 1(3):123-31.
17. Mahmood MS, Al Ameer SS. Assessment of calcium carbonate coating on osseointegration of commercially pure titanium implant by torque removal test and histomorphometric analysis. J Bagh Coll Dent. 2017; 29(1):32-8. [DOI:10.12816/0038618]
18. Mohamed IF, Ghani BA, Fatalla AA. Histological evaluation of the effect of local application of punica granatum seed oil on bone healing. Int J Biomater. 2022; 2022:4266589. [DOI:10.1155/2022/4266589]
19. Kamil NB, Majeed SS, Salman MA. Histological effect of artichoke leaf extract on bone healing in rats. J Contemp Med Sci. 2022; 8(2):115-19. [DOI:10.22317/jcms.v8i2.1200]
20. Mohamed MAH. The effect of autologous bone marrow-derived stem cells with estimation of molecular events on tooth socket healing in diabetic rabbits (a histomorphometric, histological and immunohistochemical experimental study. J Bagh Coll Dent. 2013; 25(1):116-21. [DOI:10.12816/0014974]
21. Pandey C, Rokaya D, Bhattarai BP. Contemporary concepts in osseointegration of dental implants: a review. Biomed Res Int. 2022; 2022:6170452. [DOI:10.1155/2022/6170452]
22. Timothy E. L. Douglas. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. J Dairy Sci. 2017; 101(1):28-36. [DOI:10.3168/jds.2017-13119]
23. Rodríguez Carballo E, Gámez B, Ventura F. P38 MAPK signaling in osteoblast differentiation. Front Cell Dev Biol. 2016; 4:40. [DOI:10.3389/fcell.2016.00040]
24. Zhang DW, Cheng Y, Wang NL, Zhang JC, Yang MS, Yao XS. Effects of total flavonoids and flavonol glycosides from Epimedium koreanum nakai on the proliferation and differentiation of primary osteoblasts. Phytomedicine. 2008; 15(1-2):55-61. [DOI:10.1016/j.phymed.2007.04.002]
25. Othman Jassim H, Al-Ghaban NMH. Effect of eucommia ulmoides on healing of bon defect using histological and histomorphometric analysis in rat: in vivo study. Arch Razi Inst. 2023; 78(2):651-7.
26. Davison NL, ten Harkel B, Schoenmaker T, Luo X, Yuan H, Everts V, et al. Osteoclast resorption of beta-tricalcium phosphate controlled by surface architecture. Biomaterials. 2014; 35(26):7441-51. [DOI:10.1016/j.biomaterials.2014.05.048]
27. Corrochano AR, Buckin V, Kelly PM, Giblin L. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways. J Dairy Sci. 2018; 101(6):4747-61. [DOI:10.3168/jds.2017-13618]
28. Verma AR, Vijayakumar M, Mathela CS, Rao CV . In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol. 2009; 47(9):2196-201. [DOI:10.1016/j.fct.2009.06.005]
29. Mohammad MH, Al-Ghaban NMH. Histological and histomorphometric studies of the effects of hyaluronic acid on osseointegration of titanium implant in rabbits. J Bagh College Dentistry. 2018; 30(2):10-16. [DOI:10.12816/0049745]
30. Rusu D, Drouin R, Pouliot Y, Gauthier S, Poubelle PE. A bovine whey protein extract stimulates human neutrophils to generate bioactive IL-1Ra through a NF-κB and MAPK dependent mechanism. J Nutr. 2010; 140(2):382-91. [DOI:10.3945/jn.109.109645]
31. Hassan MAA, Al-Ghaban NMH. Immunohistochemical localization of bone morphogenic protein-2 in extracted tooth socket treated by local application of grape seeds oil in rabbits. Biochem Cell Arch. 2020; 20(1) :581-9.
32. Minj S, Anand S. Whey proteins and their derivatives: bioactivity, functionality, and current applications. Dairy. 2020; 1(3): 233-58. [DOI:10.3390/dairy1030016]
33. Ibrahim MEED, Alqurashi RM, Alfaraj FY. Antioxidant activity of Moringa oleifera and Olive Olea europaea L. leaf powders and extracts on quality and oxidation stability of chicken burgers Antioxidants. 2022; 11(3): 496. [DOI:10.3390/antiox11030496]
34. Mohamed IF, Ghani BA, Fatalla AA. Histological evaluation of the effect of local application of Punica granatum seed oil on bone healing. Int J Biomater. 2022; 2022:4266589. [DOI:10.1155/2022/4266589]
35. Lean JM, Mackay AG, Chow JW, Chambers TJ. Osteocytic expression of mRNA for c-fos and IGF-I: an immediate early gene response to an osteogenic stimulus. Am J Physiol. 1996; 270(6 pt 1):E937-45. [DOI:10.1152/ajpendo.1996.270.6.E937]
36. Sheng MHC, Zhou XD, Bonewald LF, Baylink DJ, Lau KHW. Disruption of the insulin-like growth facotor-1 gene in osteocytes impairs developmental bone growth in mice. Bone. 2013; 52(1): 133-44. [DOI:10.1016/j.bone.2012.09.027]
37. Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X, et al. Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem. 2013; 288: 20122-34. [DOI:10.1074/jbc.M112.441360]
38. Fatrai S, Elghazi L, Balcazar N, Cras-Meneur C, Krits I, Kiyokawa H, et al. Akt induces β-Cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes. 2006; 55(2):318-25. [DOI:10.2337/diabetes.55.02.06.db05-0757]
39. Duan J, Yang Y, Zhang E, Wang H. Co-Cr-Mo-Cu alloys for clinical implants with osteogenic effect by increasing bone induction, formation and development in a rabbit model. Burns Trauma. 2020; 8: tkaa036. [DOI:10.1093/burnst/tkaa036]
40. Saad KAE, Abu-Shahba AGT, El-Drieny EA, Khedr MS. Evaluation of the role of autogenous bone-marrow-derived mesenchymal stem cell transplantation for the repair of mandibular bone defects in rabbits. J Craniomaxillofac Surg. 2015; 43(7):1151-60. [DOI:10.1016/j.jcms.2015.04.013]
41. Shayegan A, Petein M, Abbeele AV. Beta-tricalcium phosphate, white mineral trioxide aggregate, white Portland cement, ferric sulfate, and formocresol used as pulpotomy agents in primary pig teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 105(4):536-42. [DOI:10.1016/j.tripleo.2007.10.008]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb