Volume 28, Issue 4 (7-2024)                   IBJ 2024, 28(4): 168-178 | Back to browse issues page

Ethics code: IR.IUMS.FMD.REC.1397.066


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sepehr A, Aghamohammad S, Ghanavati R, Talebi M, Pourshafie* M R, Rohani M. Role of Native Probiotic Lactobacillus Species via TGF-β Signaling Pathway Modulation in CRC. IBJ 2024; 28 (4) :168-178
URL: http://ibj.pasteur.ac.ir/article-1-4012-en.html
Abstract:  
Background: Colon microbiome composition in colorectal cancer (CRC) patients undergoes remarkable changes. The present study was designed to assess the impact of Lactobacillus mixture on the regulating the CRC by influencing the transforming growth factor beta (TGF-β) signaling pathway in both in vitro (HT-29 cancer cells) and in vivo (BALB/c mice) models.
Methods: In this study, the antiproliferative effect of a native potential probiotic Lactobacillus mixture on HT-29 cancer cells was evaluated using the MTT assay method. Also, qRT-PCR was performed to assess the RNA expression level of genes associated with the TGF-β signaling pathway at three levels: receptor, regulatory, and inhibitory SMADs. Finally, the in vivo assays were investigated by three groups of mice: a naive group (PBS), a disease group (azoxymethane [AOM]/ dextran sulfate sodium [DSS] + PBS), and a treatment group (AOM/DSS + Lactobacillus mixture in PBS).
Results: The MTT results showed a significant decrease in proliferation of HT-29 cancer cells after 120 h of treatment. Furthermore, qRT-PCR demonstrated the downregulation of the smad2/3 gene expression in HT-29-treated cells and also reduction in the level of smad4 gene expression. In addition, in the mouse model, the tgf-βR1 gene was downregulated in the group treated with AOM/DSS/Lactobacillus, but not the AOM/DSS group. A downregulation of smad4 gene expression was also observed in in vivo models.
Conclusion: The obtained results suggest that our novel probiotic Lactobacillus mixture could have a positive impact on the inhibition of the CRC progression by downregulating the TGF-β signaling pathway.

References
1. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021; 325(7):669-85. [DOI:10.1001/jama.2021.0106]
2. Cyr SS, Barbee L, Workowski KA, Bachmann LH, Pham C, Schlanger K, et al. Update to CDC's treatment guidelines for gonococcal infection, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(50):1911-6. [DOI:10.15585/mmwr.mm6950a6]
3. Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-based immunotoxins for colorectal cancer therapy. Biomedicines. 2021; 9(11):1729. [DOI:10.3390/biomedicines9111729]
4. Tiwari A, Saraf S, Verma A, Panda PK, Jain SK. Novel targeting approaches and signaling pathways of colorectal cancer: An insight. World J Gastroenterol. 2018; 24(39):4428-35. [DOI:10.3748/wjg.v24.i39.4428]
5. Schwarzmueller L, Bril O, Vermeulen L, Léveillé N. Emerging role and therapeutic potential of lncRNAs in colorectal cancer. Cancers (Basel). 2020; 12(12):3843. [DOI:10.3390/cancers12123843]
6. Itatani Y, Kawada K, Sakai Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci. 2019; 20(23):5822. [DOI:10.3390/ijms20235822]
7. Park KS. TGf-beta family signaling in embryonic stem cells. Int J Stem cells. 2011; 4(1):18-23. [DOI:10.15283/ijsc.2011.4.1.18]
8. Liu M, Goldman G, MacDougall M, Chen S. BMP signaling pathway in dentin development and diseases. Cells. 2022; 11(14):2216. [DOI:10.3390/cells11142216]
9. Shi C, Yang EJ, Liu Y, Mou PK, Ren G, Shim JS. Bromodomain and extra-terminal motif (BET) inhibition is synthetic lethal with loss of SMAD4 in colorectal cancer cells via restoring the loss of MYC repression. Oncogene. 2021; 40(5):937-50. [DOI:10.1038/s41388-020-01580-w]
10. Seong CH, Chiba N, Kusuyama J, Subhan Amir M, Eiraku N, Yamashita S, et al. Bone morphogenetic protein 9 (BMP9) directly induces Notch effector molecule Hes1 through the SMAD signaling pathway in osteoblasts. FEBS letters. 2021; 595(3):389-403. [DOI:10.1002/1873-3468.14016]
11. Yu J, Feng Q, Wong SH, Zhang D, Yi Liang Q, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017; 66(1):70-8. [DOI:10.1136/gutjnl-2015-309800]
12. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019; 16(11):690-704. [DOI:10.1038/s41575-019-0209-8]
13. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020; 5(1):22. [DOI:10.1038/s41392-020-0116-z]
14. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PloS one. 2011; 6(1):e16393. [DOI:10.1371/journal.pone.0016393]
15. Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J, Gil A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. Biomed Res Int. 2015; 2015:505878. [DOI:10.1155/2015/505878]
16. Zinatizadeh N, Khalili F, Fallah P, Farid M, Geravand M, Yaslianifard S. Potential preventive effect of Lactobacillus acidophilus and Lactobacillus plantarum in patients with polyps or colorectal cancer. Arq Gastroenterol. 2018; 55(4):407-11. [DOI:10.1590/s0004-2803.201800000-87]
17. Rohani M, Noohi N, Talebi M, Katouli M, Pourshafie MR. Highly heterogeneous probiotic Lactobacillus species in healthy Iranians with low functional activities. PloS one. 2015; 10(12):e0144467. [DOI:10.1371/journal.pone.0144467]
18. Ghanavati R, Asadollahi P, Shapourabadi MB, Razavi S, Talebi M, Rohani M. Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the Notch and Wnt/β-catenin signaling pathways. Microb Pathog. 2020; 139:103829. [DOI:10.1016/j.micpath.2019.103829]
19. Ghanavati R, Akbari A, Mohammadi F, Asadollahi P, Javadi A, Talebi M, et al. Lactobacillus species inhibitory effect on colorectal cancer progression through modulating the Wnt/β-catenin signaling pathway. Mol Cell Biochem. 2020; 470(1-2):1-13. [DOI:10.1007/s11010-020-03740-8]
20. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. The gut microbiome modulates colon tumorigenesis. MBio. 2013; 4(6):e00692-13. [DOI:10.1128/mBio.00692-13]
21. Bedada TL, Feto TK, Awoke KS, Garedew AD, Yifat FT, Birri DJ. Probiotics for cancer alternative prevention and treatment. Biomed Pharmacother. 2020; 129:110409. [DOI:10.1016/j.biopha.2020.110409]
22. Hendler R, Zhang Y. Probiotics in the treatment of colorectal cancer. Medicines. 2018; 5(3):101. [DOI:10.3390/medicines5030101]
23. Motevaseli E, Dianatpour A, Ghafouri-Fard S. The role of probiotics in cancer treatment: emphasis on their in vivo and in vitro anti-metastatic effects. Int J Mol Cell Med. 2017; 6(2):66.
24. Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V, et al. Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 2019; 234(10):17127-43. [DOI:10.1002/jcp.28473]
25. Bertrand FE, Angus CW, Partis WJ, Sigounas G. Developmental pathways in colon cancer: crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle. 2012; 11(23):4344-51. [DOI:10.4161/cc.22134]
26. Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, et al. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PloS one. 2016; 11(2):e0147960. [DOI:10.1371/journal.pone.0147960]
27. Baindara P, Korpole S, Grover V. Bacteriocins: perspective for the development of novel anticancer drugs. Appl Microbiol Biotechnol. 2018; 102(24):10393-408. [DOI:10.1007/s00253-018-9420-8]
28. Chang C-W, Liu CY, Lee HC, Huang YH, Li LH, Chiau J-SC, et al. Lactobacillus casei variety rhamnosus probiotic preventively attenuates 5-fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model. Front Microbiol. 2018; 9:983. [DOI:10.3389/fmicb.2018.00983]
29. Grandclement C, Pallandre JR, Valmary Degano S, Viel E, Bouard A, Balland J, et al. Neuropilin-2 expression promotes TGF-β1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PloS one. 2011; 6(7):e20444. [DOI:10.1371/journal.pone.0020444]
30. Kong J, Du J, Wang Y, Yang M, Gao J, Wei X, et al. Focal adhesion molecule Kindlin-1 mediates activation of TGF-β signaling by interacting with TGF-βRI, SARA and Smad3 in colorectal cancer cells. Oncotarget. 2016; 7(46):76224. [DOI:10.18632/oncotarget.12779]
31. Wang J, Xiang H, Lu Y, Wu T. Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors. Int J Mol Med. 2021; 47(4):55. [DOI:10.3892/ijmm.2021.4888]
32. Stanilov N, Grigorova A, Velikova T, Stanilova SA. Genetic variation of TGF-ΒR2 as a protective genotype for the development of colorectal cancer in men. World J Gastrointest Oncol. 2021; 13(11):1766-80. [DOI:10.4251/wjgo.v13.i11.1766]
33. Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH, et al. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019; 9:97. [DOI:10.1186/s13578-019-0361-4]
34. Yu Y, Feng XH. TGF-β signaling in cell fate control and cancer. Curr Opin Cell Biol. 2019; 61:56-63. [DOI:10.1016/j.ceb.2019.07.007]
35. Jia X, Shanmugam C, Paluri RK, Jhala NC, Behring MP, Katkoori VR, et al. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer. Oncotarget. 2017; 8(12):20198. [DOI:10.18632/oncotarget.15560]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb