Volume 27, Issue 5 (9-2023)                   IBJ 2023, 27(5): 280-293 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sanaei K, Zamanian A, Mashayekhan S, Ramezani T. Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration. IBJ 2023; 27 (5) :280-293
URL: http://ibj.pasteur.ac.ir/article-1-3981-en.html
Abstract:  
Background: In the present study, a novel bioink was suggested based on the oxidized alginate (OAlg), gelatin (GL), and silk fibroin (SF) hydrogels.
Methods: The composition of the bioink was optimized by the rheological and printability measurements, and the extrusion-based 3D bioprinting process was performed by applying the optimum OAlg-based bioink.
Results: The results demonstrated that the viscosity of bioink was continuously decreased by increasing the SF/GL ratio, and the bioink displayed a maximum achievable printability (92 ± 2%) at 2% (w/v) of SF and 4% (w/v) of GL. Moreover, the cellular behavior of the scaffolds investigated by MTT assay and live/dead staining confirmed the biocompatibility of the prepared bioink.
Conclusion: The bioprinted OAlg-GL-SF scaffold could have the potential for using in skin tissue engineering applications, which needs further exploration.

References
1. Joshi A, Kaur T, Singh N. 3D bioprinted alginate-silk-based smart cell-instructive scaffolds for dual differentiation of human mesenchymal stem cells. ACS applied bio materials 2022; 5(6): 2870-2879. [DOI:10.1021/acsabm.2c00251]
2. Li Z, Huang S, Liu Y, Yao B, Hu T, Shi H, Xie J, Fu X. Tuning alginate-gelatin bioink properties by varying solvent and their impact on stem cell behavior. Scientific reports 2018; 8: 8020. [DOI:10.1038/s41598-018-26407-3]
3. Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. Journal of functional biomaterials 2018; 9(1): 17. [DOI:10.3390/jfb9010017]
4. Buyuksungur S, Hasirci V, Hasirci N. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA. Journal of biomedical materials research. Part A 2021; 109(12): 2425-2437. [DOI:10.1002/jbm.a.37235]
5. Soltan N, Ning L, Mohabatpour F, Papagerakis P, Chen X. Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds. ACS biomaterials science & engineering 2019; 5(6): 2976-2987. [DOI:10.1021/acsbiomaterials.9b00167]
6. Ming J, Pan F, Zuo B. Structure and properties of protein-based fibrous hydrogels derived from silk fibroin and sodium alginate. Journal of sol-gel science and technology 2015; 74: 774-782. [DOI:10.1007/s10971-015-3662-z]
7. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hagg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015; 16(5): 1489-1496. [DOI:10.1021/acs.biomac.5b00188]
8. Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. International journal of molecular sciences 2016; 17(12): 1976. [DOI:10.3390/ijms17121976]
9. Lee SJ, Seok JM, Lee JH, Lee J, Kim W, Park SA. Three-dimensional printable hydrogel using a hyaluronic acid/sodium alginate bio-ink. Polymers (Basel) 2021; 13(5): 794. [DOI:10.3390/polym13050794]
10. Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules 2018; 19(1): 3-21. [DOI:10.1021/acs.biomac.7b01331]
11. Guo Y, Wang X, Li B, Shen Y, Shen L, Wu J, Yang J. Oxidized sodium alginate crosslinked silk fibroin composite scaffold for skin tissue engineering. Journal of biomedical materials research. Part B, Applied biomaterials 2022; 110(12): 2667-2675. [DOI:10.1002/jbm.b.35119]
12. Twizeyimana E, Zhang S, Mukerabigwi JF, Ge Z. Oxidized alginate hydrogel-based derivatives with optimized features for cell culture scaffold. Macromolecular research 2022; 30: 238-244. [DOI:10.1007/s13233-022-0030-z]
13. Baniasadi H, Mashayekhan S, Fadaoddini S, Haghirsharifzamini Y. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications. Journal of biomaterials applications 2016; 31(1): 152-161. [DOI:10.1177/0885328216634057]
14. Emami Z, Ehsani M, Zandi M, Foudazi R. Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohydrate polymers 2018; 198: 509-517. [DOI:10.1016/j.carbpol.2018.06.080]
15. Khalighi S, Saadatmand M. Bioprinting a thick and cell-laden partially oxidized alginate-gelatin scaffold with embedded micro-channels as future soft tissue platform. International journal of biological macromolecules 2021; 193: 2153-2164. [DOI:10.1016/j.ijbiomac.2021.11.046]
16. Hajiabbas M, Alemzadeh I, Vossoughi M. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application. Carbohydrate polymers 2020; 245: 116465. [DOI:10.1016/j.carbpol.2020.116465]
17. Wu Z, Li Q, Xie S, Shan X, Cai Z. In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold. Materials science & engineering. C, Materials for biological applications 2020; 109: 110530. [DOI:10.1016/j.msec.2019.110530]
18. Mahnama H, Dadbin S, Frounchi M, Rajabi S. Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration, Artificial cells, nanomedicine, and biotechnology 2017; 45(5): 928-935. [DOI:10.1080/21691401.2016.1193025]
19. Ajiteru O, Sultan MT, Lee YJ, Seo YB, Hong H, Lee JS, Lee H, Suh YJ, Ju HW, Lee OJ, Park HS, Jang M. Kim SH, Park CH. A 3D printable electroconductive biocomposite bioink based on silk fibroin-conjugated graphene oxide. Nano letters 2020; 20(9): 6873-6883. [DOI:10.1021/acs.nanolett.0c02986]
20. Gomez CG, Rinaudo M, Villar MA. Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydrate polymers 2007; 67(3): 296-304. [DOI:10.1016/j.carbpol.2006.05.025]
21. Hasturk O, Jordan KE, Choi J, Kaplan DL. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 2020; 232: 119720. [DOI:10.1016/j.biomaterials.2019.119720]
22. Chawla S, Kumar A, Admane P, Bandyopadhyay A, Ghosh S. Elucidating role of silk-gelatin bioink to recapitulate articular cartilage differentiation in 3D bioprinted constructs. Bioprinting 2017; 7: 1-13. [DOI:10.1016/j.bprint.2017.05.001]
23. Di Giuseppe M, Law N, Webb B, Macrae RA, Liew LJ, Sercombe TB, Dilley RJ, Doyle BJ. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Journal of the mechanical behavior of biomedical materials 2018; 79: 150-157. [DOI:10.1016/j.jmbbm.2017.12.018]
24. Stepanovska J, Otahal M, Hanzalek K, Supova M, Matejka R. pH modification of high-concentrated collagen bioinks as a factor affecting cell viability, mechanical properties, and printability. Gels 2021; 7(4): 252. [DOI:10.3390/gels7040252]
25. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Scientific reports 2016; 6: 29977. [DOI:10.1038/srep29977]
26. Kim MH, Lee Y, Jung WK, Oh J, Nam SY. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Journal of the mechanical behavior of biomedical materials 2019; 98: 187-194. [DOI:10.1016/j.jmbbm.2019.06.014]
27. Atoufi Z, Zarrintaj P, Motlagh GH, Amiri A, Bagher Z, Kamrava SK. A novel bio electro active alginate-aniline tetramer/agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. Journal of biomaterials science. Polymer edition 2017; 28(15): 1617-1638. [DOI:10.1080/09205063.2017.1340044]
28. Park J, Nam J, Yun H, Jin HJ, Kwak HW. Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydrate polymers 2021; 254: 117317. [DOI:10.1016/j.carbpol.2020.117317]
29. Khoshnood N., A. Zamanian, M. Abbasi, The potential impact of polyethylenimine on biological behavior of 3D-printed alginate scaffolds. International journal of biological macromolecules 2021; 178: 19-28. [DOI:10.1016/j.ijbiomac.2021.02.152]
30. Li H, Tan YJ, Leong KF, Li L. 3D bioprinting of highly thixotropic alginate/methylcellulose hydrogel with strong interface bonding. ACS applied materials and interfaces 2017; 9(23): 20086-20097. [DOI:10.1021/acsami.7b04216]
31. Kishan AP, Nezarati RM, Radzicki CM, Renfro AL, Robinson JL, Whitely ME, Cosgriff-Hernandez EM. In situ crosslinking of electrospun gelatin for improved fiber morphology retention and tunable degradation. Journal of materials chemistry. B 2015; 3(41): 8212. [DOI:10.1039/C5TB90125A]
32. Mo X, Iwata H, Matsuda S, Ikada Y. Soft tissue adhesive composed of modified gelatin and polysaccharides. Journal of biomaterials science. Polymer edition 2000; 11(4): 341-351. [DOI:10.1163/156856200743742]
33. Yang W, Xu H, Lan Y, Zhu Q, Liu Y, Huang S, Shi S, Hancharou A, Tang B, Guo R. Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair. International journal of biological macromolecules 2019; 130: 58-67. [DOI:10.1016/j.ijbiomac.2019.02.120]
34. Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. ACS applied materials and interfaces 2019; 11(37): 33684-33696. [DOI:10.1021/acsami.9b11644]
35. Mehrotra S, de Melo BAG, Hirano M, Keung W, Li RA, Mandal BB, Shin SR. Nonmulberry silk based ink for fabricating mechanically robust cardiac patches and endothelialized myocardium on a chip application, Advanced functional materials 2020; 30(12): 1907436. [DOI:10.1002/adfm.201907436]
36. de Souza JB, Rosa GDS, Rossi MC, de Castro Stievani F, Pfeifer JPH, Krieck AMT, de Carvalho Bovolato AL, Fonseca-Alves CE, Borrás VA, Alves ALG. In vitro biological performance of alginate hydrogel capsules for stem cell delivery. Frontiers in bioengineering and biotechnology 2021; 9: 674581. [DOI:10.3389/fbioe.2021.674581]
37. Mousavi A, Mashayekhan S, Baheiraei N, Pourjavadi A. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering, International journal of biological macromolecules 2021; 180: 692-708. [DOI:10.1016/j.ijbiomac.2021.03.097]
38. Heo DN, Alioglu MA, Wu Y, Ozbolat V, Ayan B, Dey M, Kang Y, Ozbolat IT. 3D bioprinting of carbohydrazide-modified gelatin into microparticle-suspended oxidized alginate for the fabrication of complex-shaped tissue constructs. ACS applied materials & interfaces 2020; 12(18): 20295-20306. [DOI:10.1021/acsami.0c05096]
39. Karakaya E, Schöbel L, Zhong Y, Hazur J, Heid S, Forster L, Teßmar J, Boccaccini AR, Detsch R. How to determine a suitable alginate for biofabrication approaches using an extensive alginate library?. Biomacromolecules 2023; 24(7): 2982-2997. [DOI:10.1021/acs.biomac.2c01282]
40. Ghanbari M, Salavati-Niasari M, Mohandes F. Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering. International journal of pharmaceutics 2021; 602: 120660. [DOI:10.1016/j.ijpharm.2021.120660]
41. Sanz-horta R, Matesanz A, Jorcano L, Velasco D, Acedo P, Gallardo A, Reinecke H, Elvira C. Preparation and characterization of plasma-derived Fibrin hydrogels modified by alginate di-aldehyde. International journal of molecular sciences 2022; 23(8): 4296. [DOI:10.3390/ijms23084296]
42. Gao T, Gillispie GJ, Copus JS, Kumar APR, Seol YJ, Atala A, Yoo JJ, Lee SJ. Optimization of gelatin-alginate composite bioink printability using rheological parameters: A systematic approach. Biofabrication 2018; 10(3): 034106. [DOI:10.1088/1758-5090/aacdc7]
43. Li H, Li N, Zhang H, Zhang Y, Suo H, Wang L, Xu M. Three-dimensional bioprinting of perfusable hierarchical microchannels with alginate and silk fibroin double cross-linked network. 3D printing and additive manufacturing 2020; 7(2): 78-84. [DOI:10.1089/3dp.2019.0115]
44. Kreller T, Distler T, Heid S, Gerth S, Detsch R, Boccaccini AR. Physico-chemical modification of gelatine for the improvement of 3D printability of oxidized alginate-gelatine hydrogels towards cartilage tissue engineering. Materials and design 2021; 208: 109877. [DOI:10.1016/j.matdes.2021.109877]
45. Reakasame S, Dranseikiene D, Schrüfer S, Zheng K, Schubert DW, Boccaccini AR. Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability. Materials science & engineering. C, Materials for biological applications 2021; 128: 112336. [DOI:10.1016/j.msec.2021.112336]
46. Khoshnood N, Zamanian A. Development of novel alginate-polyethyleneimine cell-laden bioink designed for 3D bioprinting of cutaneous wound healing scaffolds. Journal of applied polymer sciense 2022; 139(21): 52227. [DOI:10.1002/app.52227]
47. Trucco D, Sharma A, Manferdini C, Gabusi E, Petretta M, Desando G, Ricotti L, Chakraborty J, Ghosh S, Lisignoli G. Modeling and fabrication of silk fibroin-gelatin-based constructs using extrusion-based three-dimensional bioprinting. ACS biomaterials science and engineering 2021; 7(7): 3306-3320. [DOI:10.1021/acsbiomaterials.1c00410]
48. Heid S, Becker K, Byun J, Biermann I, Neščáková Z, Zhu H, Groll J, Boccaccini AR. Bioprinting with bioactive alginate dialdehyde-gelatin (ADA-GEL) composite bioinks: Time-dependent in-situ crosslinking via addition of calcium-silicate particles tunes in vitro stability of 3D bioprinted constructs. Bioprinting 2022; 26: e00200. [DOI:10.1016/j.bprint.2022.e00200]
49. Wang J, Cui Z, Maniruzzaman M. Bioprinting: a focus on improving bioink printability and cell performance based on different process parameters. International journal of pharmaceutics 2023; 640: 123020. [DOI:10.1016/j.ijpharm.2023.123020]
50. Augustine R. Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Progress in biomaterials 2018; 7: 77-92. [DOI:10.1007/s40204-018-0087-0]
51. Yuan R, Luo C, Yang Y, He C, Lu Z, Ge L. Self-healing, high adherent, and antioxidative LbL multilayered film for enhanced cell adhesion. Advanced materials interfaces 2020; 7(11): 1901873. [DOI:10.1002/admi.201901873]
52. Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, Kim MB, Lee H, Kim JH, Cho DW. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials 2018 ; 168: 38-53. [DOI:10.1016/j.biomaterials.2018.03.040]
53. Zidarič T, Milojević M, Gradisnik L, Stana-Kleinschek K, Maver U, Maver T. Polysaccharide-based bioink formulation for 3D bioprinting of an In vitro model of the human dermis. Nanomaterials 2020; 10(4): 733. [DOI:10.3390/nano10040733]
54. Sharma C, Dinda A, Potdar DP, Mishra N. Fabrication of quaternary composite scaffold from silk fibroin, chitosan, gelatin, and alginate for skin regeneration. Journal of applied polymer science 2015; 132(44): 42743. [DOI:10.1002/app.42743]
55. Wang N, Tian X, Cheng B, Guang S, Xu H. Calcium alginate/silk fibroin peptide/Bletilla striata polysaccharide blended microspheres loaded with tannic acid for rapid wound healing. International journal of biological macromolecules 2022; 220: 1329-1344 [DOI:10.1016/j.ijbiomac.2022.09.123]
56. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Progress in polymer science 2012; 37(1): 106-126. [DOI:10.1016/j.progpolymsci.2011.06.003]
57. Dai M, Li M, Gong J, Meng L, Zhang B, Zhang Y, Yin Y, Wang J. Silk fibroin/gelatin/calcium alginate composite materials: Preparation, pore characteristics, comprehensive hemostasis in vitro. Materials and design 2022; 216: 110577. [DOI:10.1016/j.matdes.2022.110577]
58. Drnovšek N, Kocen R, Gantar A, Drobnič-Košorok M, Leonardi A, Križaj I, Rečnik A, Novak S. Size of silk fibroin β-sheet domains affected by Ca 2+. Journal of materials chemistry B 2016; 40: 6597-6608. [DOI:10.1039/C6TB01101B]
59. Varaprasad K, Karthikeyan C, Yallapu M.M, Sadiku R. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. International journal of biological macromolecules 2022; 212: 561-578. [DOI:10.1016/j.ijbiomac.2022.05.157]
60. Kong X, Chen L, Li B, Quan C, Wu J. Applications of oxidized alginate in regenerative medicine. Journal of materials chemistry B 2021; 9(12): 2785-2801. [DOI:10.1039/D0TB02691C]
61. Garcia-Orue I, Santos-Vizcaino E, Sanchez P, Gutierrez FB, Aguirre JJ, Hernandez R., Igartua M. Bioactive and degradable hydrogel based on human platelet-rich plasma fibrin matrix combined with oxidized alginate in a diabetic mice wound healing model. Biomaterial advances 2022; 135: 112695. [DOI:10.1016/j.msec.2022.112695]
62. Zhang X, Li Y, Ma Z, He D, Li H. Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioactive materials 2021; 6(11): 3692-3704. [DOI:10.1016/j.bioactmat.2021.03.038]
63. Zhao D, Wang X, Cheng B, Yin M, Hou Z, Li X, Liu K, Tie C, Yin M. Degradation-kinetics-controllable and tissue-regeneration-matchable photocross-linked alginate hydrogels for bone repair. ACS applied materials & interfaces 2022; 14(19): 21886-21905. [DOI:10.1021/acsami.2c01739]
64. Gao C, Liu M, Chen J, Zhang X. Preparation and controlled degradation of oxidized sodium alginate hydrogel. Polymer degradation and stability 2009; 94 (9): 1405-1410. [DOI:10.1016/j.polymdegradstab.2009.05.011]
65. Smandri A, Nordin A, Hwei NM, Chin KY, Abd Aziz I, Fauzi MB. Natural 3D-printed bioinks for skin regeneration and wound healing: A systematic review. Polymers (Basel) 2020; 12(8): 1782. [DOI:10.3390/polym12081782]
66. Aboomeirah AA, Sarhan WA, Khalil EA, Abdellatif A, Abo Dena AS, El-Sherbiny IM. Wet electrospun nanofibers-fortified gelatin/alginate-based nano-composite as a single-dose biomimicking skin substitute. ACS applied bio materials 2022; 5(8): 3678-3694. [DOI:10.1021/acsabm.2c00147]
67. Ramakrishnan R, Kasoju N, Raju R, Geevarghese R, Gauthaman A, Bhatt A. Exploring the potential of alginate-gelatin-diethylaminoethyl cellulose-fibrinogen based bioink for 3d bioprinting of skin tissue constructs. Carbohydrate polymer technologies and applicatins 2022; 3: 100184. [DOI:10.1016/j.carpta.2022.100184]
68. Kim G, Ahn S, Kim Y, Cho Y, Chun W. Coaxial structured collagen-alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. Journal of materials chemistry 2011; 21: 6165-6172 [DOI:10.1039/c0jm03452e]
69. Xie H, Bai Q, Kong F, Li Y, Zha X, Zhang L, Zhao Y, Gao S, Li P, Jiang Q. Allantoin-functionalized silk fibroin/sodium alginate transparent scaffold for cutaneous wound healing. International journal of biological macromolecules 2022 ; 207: 859-872. [DOI:10.1016/j.ijbiomac.2022.03.147]
70. Monavari M, Homaeigohar S, Medhekar R, Nawaz Q, Monavari M, Zheng K, Boccaccini AR. A 3D-printed wound-healing material composed of alginate dialdehyde-gelatin incorporating astaxanthin and borate bioactive glass microparticles. ACS applied materials & interfaces 2023; doi: 10.1021/acsami.2c23252. [DOI:10.1021/acsami.2c23252]
71. Klein MO, Bijelic A, Toyoshima T, Götz H, Von Koppenfels RL, Al-Nawas B, Duschner H. Long-term response of osteogenic cells on micron and submicron-scale-structured hydrophilic titanium surfaces: sequence of cell proliferation and cell differentiation. Clinical oral implants research 2010; 21(6): 642-649. [DOI:10.1111/j.1600-0501.2009.01883.x]
72. Kempf M, Miyamura Y, Liu PY, Chen HAC, Nakamura H, Shimizu H, Tabata Y, Kimble RM, McMillan JR. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials 2011; 32(21): 4782-4792. [DOI:10.1016/j.biomaterials.2011.03.023]
73. You F, Wu X, Kelly M, Chen X. Bioprinting and in vitro characterization of alginate dialdehyde-gelatin hydrogel bio-ink. Bio-design and manufacturing 3 (2020): DOI:10.1007/s42242-020-00058-8. [DOI:10.1007/s42242-020-00058-8]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb