1. Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio. 2023; 19:100589. [
DOI:10.1016/j.mtbio.2023.100589]
2. Laurano R, Boffito M, Ciardelli G, Chiono, V. Wound dressing products: A translational investigation from the bench to the market. Eng Regen 2022; 3(2):182-200. [
DOI:10.1016/j.engreg.2022.04.002]
3. Tognetti L, Pianigiani E, Ierardi F, Lorenzini G, Casella D, Liso F G, et al. The use of human acellular dermal matrices in advanced wound healing and surgical procedures: State of the art. Dermatol Ther. 2021; 34(4): e14987. [
DOI:10.1111/dth.14987]
4. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel). 2021; 13:1105. [
DOI:10.3390/polym13071105]
5. Zeng Q, Qi X, Shi G, Zhang M, Haick H. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano. 2022; 16(2):1708-33. [
DOI:10.1021/acsnano.1c08411]
6. Capella Monsonís H, De Pieri A, Peixoto R, Korntner S, Zeugolis DI. Extracellular matrix-based biomaterials as adipose-derived stem cell delivery vehicles in wound healing: a comparative study between a collagen scaffold and two xenografts. Stem Cell Res Ther. 2020; 11(1): 510. [
DOI:10.1186/s13287-020-02021-x]
7. Zhe M, Wu X, Yu P, Xu J, Liu M, Yang G, Xiang Z, Xing F, Ritz U. Recent advances in decellularized extracellular matrix-based bioinks for 3d bioprinting in tissue engineering. Materials (Basel). 2023; 16(8):3197. [
DOI:10.3390/ma16083197]
8. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022; 10:15-31. [
DOI:10.1016/j.bioactmat.2021.09.014]
9. Luze H, Nischwitz SP, Smolle C, Zrim R, Kamolz LP. The use of acellular fish skin grafts in burn wound management-a systematic review. Medicina. 2022; 58(7):912. [
DOI:10.3390/medicina58070912]
10. Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized tissues for wound healing: towards closing the gap between scaffold design and effective extracellular matrix remodeling. Front Bioeng Biotechnol. 2022; 10. [
DOI:10.3389/fbioe.2022.821852]
11. Zhao X, Guo YC, Chen HH, Li X, Wang Y, Ni WW et al. [Effects of porcine acellular dermal matrix combined with human epidermal stem cells on wound healing of full-thickness skin defect in nude mice]. Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2022; 38(1): 45-56.
12. Cao SJ, Wang LF, Ba T, Fu X, Li F, Hao CG. [Effects of allogeneic mouse adipose-derived mesenchymal stem cell-microporous sheep acellular dermal matrix on healing of wound with full-thickness skin defect in mouse and the related mechanism]. Zhonghua Shao Shang Za Zhi 2018;34. 901-6.
13. Isakson M, de Blacam C, Whelan D, McArdle A, Clover AJP. Mesenchymal stem cells and cutaneous wound healing: current evidence and future potential. Stem Cells Int. 2015; 2015:831095. [
DOI:10.1155/2015/831095]
14. Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019; 10(1): 111. [
DOI:10.1186/s13287-019-1212-2]
15. Riha SM, Maarof M, Fauzi MB. Synergistic effect of biomaterial and stem cell for skin tissue engineering in cutaneous wound healing: a concise review. Polymers (Basel) 2021; 13(10):1546. [
DOI:10.3390/polym13101546]
16. Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Milan PB, Baino F, et al. Stem cell‐mediated angiogenesis in skin tissue engineering and wound healing. Wound Repair Regen. 2022; 30(4): 421-35. [
DOI:10.1111/wrr.13033]
17. Lin S, He X, He Y. Co-culture of ASCs/EPCs and dermal extracellular matrix hydrogel enhances the repair of full-thickness skin wound by promoting angiogenesis. Stem Cell Res Ther. 2021; 12(1):129. [
DOI:10.1186/s13287-021-02203-1]
18. Shroff G, Gupta R, Kumar Makhija L. Evaluation of wound healing ability with human embryonic stem cells in patients with non-healing wounds: a case series. J Pigment Disord. 2015; 2:7.
19. DesJardins-Park H E, Foster DS, Longaker MT. Fibroblasts and wound healing: an update. Regen Med. 2018; 13(5):491-95. [
DOI:10.2217/rme-2018-0073]
20. Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, et al. Fibroblasts in scar formation: biology and clinical translation. Oxid Med Cell Longev. 2022; 2022:4586569. [
DOI:10.1155/2022/4586569]
21. Jorgensen, A. M., Chou, Z., Gillispie, G., Lee, S. J., Yoo, J. J., Soker, S., et al. Decellularized skin extracellular matrix (dsecm) improves the physical and biological properties of fibrinogen hydrogel for skin bioprinting applications. Nanomaterials(Basel). 2020; 10(8):1484. [
DOI:10.3390/nano10081484]
22. Unai Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020; 21(15):5447. [
DOI:10.3390/ijms21155447]
23. Bergholt MS, Serio A, Albro MB. Raman spectroscopy: guiding light for the extracellular matrix. Front Bioeng Biotechnol. 2019; 7:3037. [
DOI:10.3389/fbioe.2019.00303]
24. Borel S, Prikryl EA, Vuong NH, Jonkman J, Vanderhyden B, Wilson BC, Murugkar S. Discrimination of normal and malignant mouse ovarian surface epithelial cells in vitro using Raman microspectroscopy. Anal Methods 2015; 7:9520-28. [
DOI:10.1039/C5AY02462E]
25. Neishabouri A, Khaboushan AS, Daghigh F, Kajbafzadeh AM, Zolbin MM. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Front Bioeng Biotechnol. 2022; 10: 805299. [
DOI:10.3389/fbioe.2022.805299]
26. Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng. 2022; 13: 20417314221101151. [
DOI:10.1177/20417314221101151]
27. Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020; 21(15):5447. [
DOI:10.3390/ijms21155447]
28. Shahraki S, Bideskan AE, Aslzare M, Tavakkoli M, Bahrami AR, Hosseinian S, et al. Decellularization with triton X-100 provides a suitable model for human kidney bioengineering using human mesenchymal stem cells. Life Sci. 2022; 295:120167. [
DOI:10.1016/j.lfs.2021.120167]
29. Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol 2023; 24(2): 142-61. [
DOI:10.1038/s41580-022-00531-5]
30. Pomin, V. H., and Mulloy, B. Glycosaminoglycans and proteoglycans. Pharmaceuticals (Basel) 2018;11. [
DOI:10.3390/ph11010027]
31. Addis R, Cruciani S, Santaniello S, Bellu E, Sarais G, Ventura C, et al. Fibroblast proliferation and migration in wound healing by phytochemicals: evidence for a novel synergic outcome. Int J Med Sci. 2020; 17(8):1030-42. [
DOI:10.7150/ijms.43986]
32. Li M, Zhao Y, Hao H, Han W, Fu X. Theoretical and practical aspects of using fetal fibroblasts for skin regeneration. Ageing Res Rev. 2017; 36. 32-41. [
DOI:10.1016/j.arr.2017.02.005]
33. Nolte SV, Xu W, Rennekampff HO, Rodemann HP. Diversity of fibroblasts--a review on implications for skin tissue engineering. Cells Tissues Organs. 2008; 187(3): 165-76. [
DOI:10.1159/000111805]
34. Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell. 2021; 184:3852-72. [
DOI:10.1016/j.cell.2021.06.024]