Volume 27, Issue 5 (9-2023)                   IBJ 2023, 27(5): 219-246 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimi S, Khosravi M A, Raz A, Karimipoor M, Parvizi* P. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications. IBJ 2023; 27 (5) :219-246
URL: http://ibj.pasteur.ac.ir/article-1-3898-en.html
Abstract:  
Programmable nucleases are powerful genomic tools for precise genome editing. These tools precisely recognize, remove, or change DNA at a defined site, thereby stimulating cellular DNA repair pathways that can cause mutations or accurate replacement or deletion/insertion of a sequence. The CRISPR-Cas9 system is the most potent and useful genome editing technique adapted from the immune system of certain bacteria and archaea against viruses and phages. In the past decade, this technology has made notable progress, and at present, it has largely been used in genome manipulation to make precise gene editing in plants, animals, and human cells. In this review, we aimed to explain the basic principles, mechanisms of action, and applications of this system in different areas of medicine, with an emphasize on the detection and treatment of parasitic diseases.
Type of Study: Review Article | Subject: Medical Biotechnology

References
1. Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Molecular therapy 2016; 24(3): 430-446. [DOI:10.1038/mt.2016.10]
2. Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011; 188(4): 773-782. [DOI:10.1534/genetics.111.131433]
3. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology 2014; 32(4): 347-355. [DOI:10.1038/nbt.2842]
4. Guptt P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and cellular biology 1994; 14(12): 8096-8106. [DOI:10.1128/mcb.14.12.8096-8106.1994]
5. Segal DJ, Meckler JF. Genome engineering at the dawn of thegolden age. Annual review of genomics and human genetics 2013; 14: 135-158. [DOI:10.1146/annurev-genom-091212-153435]
6. Tadepally HD, Aubry M. Evolution of C2H2-zinc finger genes and subfamilies in mammals: Species-specific duplication and loss of clusters, genes and effector domains. BMC evolutionary biology 2008; 8: 176. [DOI:10.1186/1471-2148-8-176]
7. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 2013; 31(7): 397-405. [DOI:10.1016/j.tibtech.2013.04.004]
8. Landgraf A, Kay S, Schornack S, Bonas U, Nickstadt A, Lahaye T, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science (80-). 2009; 326(5959): 1509-1512. [DOI:10.1126/science.1178811]
9. Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. Journal of clinical investigation 2014; 124(10): 4154-4161. [DOI:10.1172/JCI72992]
10. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-821. [DOI:10.1126/science.1225829]
11. Lim JM, Kim HH. Basic principles and clinical applications of CRISPR-based genome editing. Yonsei medical Journal 2022; 63(2): 105-113. [DOI:10.3349/ymj.2022.63.2.105]
12. Makarova KS, Wolf YI, Alkhnbashi OS, CostaF, Shah SA, Saunders SJ, BarrangouR, Stan JJ, Brouns SJJ, Charpentier E, HaftDH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP White MF, Yakunin AF Garrett RA, Oost JVD, Backofen R, Koonin EV.. An updated evolutionary classification of CRISPR-Cas systems. Nature reviews microbiology 2015; 13(11): 722-736. [DOI:10.1038/nrmicro3569]
13. Bishop TF, van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. Journal of exprimental biology 2020; 223(Pt Suppl 1): jeb207159. [DOI:10.1242/jeb.207159]
14. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal transduction and targeted therapy 2020; 5(1): 1. [DOI:10.1038/s41392-019-0089-y]
15. Kozovska Z, Rajcaniova S, Munteanu P, Dzacovska S, Demkova L. CRISPR: History and perspectives to the future. Biomedicine and pharmacotherapy 2021; 141: 111917. [DOI:10.1016/j.biopha.2021.111917]
16. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakatura A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology 1987; 169(12): 5429-5433. [DOI:10.1128/jb.169.12.5429-5433.1987]
17. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting:recommendations for a standardized methodology. Journal of clinical microbiology 1993; 31(2): 406-409. [DOI:10.1128/jcm.31.2.406-409.1993]
18. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of molecular evolution 2005; 60: 174-182. [DOI:10.1007/s00239-004-0046-3]
19. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468(7320): 67-71. [DOI:10.1038/nature09523]
20. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011; 471(7340): 602-607. [DOI:10.1038/nature09886]
21. Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, Garza-Rodríguez MDL, Barrera-Saldaña1 HA. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases. International journal of molecular sciences 2019; 43(4): 1559-1574. [DOI:10.3892/ijmm.2019.4112]
22. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-826. [DOI:10.1126/science.1232033]
23. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Luciano Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-823. [DOI:10.1126/science.1231143]
24. Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nature medicine 2017; 23(4): 415-423. [DOI:10.1038/nm.4313]
25. Cyranoski D. First trial of CRISPR in people: Chinese team approved to test gene-edited cells in people with lung cancer. Nature 2016; 535(7613): 476-477. [DOI:10.1038/nature.2016.20302]
26. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016 ; 539(7630): 479. [DOI:10.1038/nature.2016.20988]
27. Mengstie MA, Wondimu BZ. Mechanism and applications of crispr/ cas-9-mediated genome editing. Biologics: targets and therapy 2021; 15: 353-361. [DOI:10.2147/BTT.S326422]
28. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, Oost JVD, Barrangou R, Koonin EV . Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nature review microbiology 2020; 18(2): 67-83. [DOI:10.1038/s41579-019-0299-x]
29. Jiang F, Doudna JA. The Structural biology of CRISPR-Cas systems. Current opinion of structural biology 2015; 30: 100-111. [DOI:10.1016/j.sbi.2015.02.002]
30. Tang H, Yuan H, Du W, Li G, Xue D, Huang Q. Active-site models of streptococcus pyogenes Cas9 in DNA cleavage state. Frontires in molecular bioscience 2021; 8: 235. [DOI:10.3389/fmolb.2021.653262]
31. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014; 156(5): 935-949. [DOI:10.1016/j.cell.2014.02.001]
32. Liu Z, Dong H, Cui Y, Cong L, Zhang D. Application of different types of CRISPR/Cas-based systems in bacteria. Microbial cell factories 2020; 19(1): 172. [DOI:10.1186/s12934-020-01431-z]
33. Hille F, Charpentier E. CRISPR-cas: Biology, mechanisms and relevance. Philosofical transactions of the royal society B 2016; 371(1707): 20150496. [DOI:10.1098/rstb.2015.0496]
34. Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, Randaua L. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA biology 2018; 16(4): 504-517. [DOI:10.1080/15476286.2018.1504546]
35. Newsom S, Parameshwaran HP, Martin L, Rajan R. The CRISPR-Cas mechanism for adaptive immunity and alternate bacterialfunctions fuels diverse biotechnologies. Frontiers in cellular and infection microbiology 2021; 10: 898. [DOI:10.3389/fcimb.2020.619763]
36. Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA biology 2013; 10(5): 841-851. [DOI:10.4161/rna.24203]
37. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the national academy of sciences of the united states of america 2012 ; 109(39): E2579-E2586. [DOI:10.1073/pnas.1208507109]
38. Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M, Marco E, Gotta GM, Maeder ML, Kennedy EM, Kornepati AVR, Sousa A, Collins MA, Jayaram H, Cullen BR, Bumcrot D. Characterization of staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome biology 2015; 16: 257. [DOI:10.1186/s13059-015-0817-8]
39. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, , Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520: 186-191. [DOI:10.1038/nature14299]
40. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proceedings of the national academy of sciences of the united states of america 2013; 110(39): 15644-15649. [DOI:10.1073/pnas.1313587110]
41. Chen F, Ding X, Feng Y, Seebeck T, Jiang Y, Davis GD. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nature communication 2017; 8: 14958. [DOI:10.1038/ncomms14958]
42. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482(7385): 331-338. [DOI:10.1038/nature10886]
43. Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, Oost JVD, Brouns SJJ, Severinov K. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proceedings of the national academy of sciences of the united states of america 2011; 108(25): 10098-10103. [DOI:10.1073/pnas.1104144108]
44. Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends in plant science 2019; 24(12): 1102-1125. [DOI:10.1016/j.tplants.2019.09.006]
45. Chiang TWW, Le Sage C, Larrieu D, Demir M, Jackson SP. CRISPR-Cas9D10A nickase-based genotypic and phenotypic screening to enhance genome editing. Scientific reports 2016; 6: 24356. [DOI:10.1038/srep24356]
46. Li PP and Margolis RL. Use of single guided Cas9 nickase to facilitate precise and efficient genome editing in human iPSCs. Scientific reports 2021; 11: article number 9865. [DOI:10.1038/s41598-021-89312-2]
47. Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant journal 2014; 79(2): 348-359. [DOI:10.1111/tpj.12554]
48. Trevino AE, Zhang F. Genome editing using Cas9 nickases. Methods enzymol 2014; 546:161-174. [DOI:10.1016/B978-0-12-801185-0.00008-8]
49. Brocken DJW, Tark-Dame M, Dame RT. dCas9: A versatile tool for epigenome editing. Current issues in molecular biology 2018; 26: 15-32. [DOI:10.21775/cimb.026.015]
50. Karlson CKS, Mohd‐noor SN, Nolte N, Tan BC. Crispr/dcas9‐based systems: mechanisms and applications in plant sciences. Plants 2021; 10(10): 2055. [DOI:10.3390/plants10102055]
51. Brezgin S, Kostyusheva A, Kostyushev D, Chulanov V. Dead cas systems: types, principles, and applications. International journal of molecular sciences 2019; 20(23): 6041. [DOI:10.3390/ijms20236041]
52. Li Y, Zhou LQ. dCas9 techniques for transcriptional repression in mammalian cells: Progress, applications and challenges. Bio essays 2021; 43(9): e2100086 [DOI:10.1002/bies.202100086]
53. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic acids research 2013; 41(15): 7429-37. [DOI:10.1093/nar/gkt520]
54. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152(5): 1173-1183. [DOI:10.1016/j.cell.2013.02.022]
55. Alerasool N, Segal D, Lee H, Taipale M. An efficient KRAB domain for CRISPRi applications in human cells. Nature methods 2020; 17(11): 1093-1096 [DOI:10.1038/s41592-020-0966-x]
56. Liu Y, Wan X, Wang B. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Nature communication 2019; 10(1): 3693. [DOI:10.1038/s41467-019-11479-0]
57. Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, Haque SJ , Cecchi RJ, Kowal EJK , Buchthal J , Housden BE, Perrimon N, Collins JJ, Church G. Comparison of Cas9 activators in multiple species. Nature methods 2016; 13(7): 563-567. [DOI:10.1038/nmeth.3871]
58. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517(7536): 583-588. [DOI:10.1038/nature14136]
59. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature methods 2013; 10(10): 973-976. [DOI:10.1038/nmeth.2600]
60. Pandelakis M, Delgado E, Ebrahimkhani MR. CRISPR-Based synthetic transcription factors in vivo: the future of therapeutic cellular programming. Cell systems 2020; 10(1): 14. [DOI:10.1016/j.cels.2019.10.003]
61. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer EPR, Lin S , Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM2. Highly efficient Cas9-mediated transcriptional programming. Nature methods 2015; 12(4): 326-328. [DOI:10.1038/nmeth.3312]
62. Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, Fagan PR, Putatunda R, Young WB, Khalili K, Hu W. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Scientific reports 2015; 5: 1-14. [DOI:10.1038/srep16277]
63. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014; 159(3): 635-646. [DOI:10.1016/j.cell.2014.09.039]
64. Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H, Hu X, Li C, Yao X, Shen X, Sun Y, Wei Y, Liu F, Ying W, Zhang J, Tang C, Zhang X, Xu H, Shi L, Cheng L, Huang P, Yang H. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nature neuroscience 2018; 21(3): 440-446. [DOI:10.1038/s41593-017-0060-6]
65. Hornschuh M, Wirthgen E, Wolfien M, Singh KP, Wolkenhauer O, Däbritz J. The role of epigenetic modifications for the pathogenesis of Crohn's disease. Clinical epigenetics 2021; 13(1): 1-14. [DOI:10.1186/s13148-021-01089-3]
66. Zhang W, Song M, Qu J, Liu GH. Epigenetic modifications in cardiovascular aging and diseases. Circulation research 2018; 123(7): 773-786. [DOI:10.1161/CIRCRESAHA.118.312497]
67. Sar P, Dalai S. CRISPR/Cas9 in epigenetics studies of health and disease. Progress in molecular biology and translational science 2021; 181: 309-343. [DOI:10.1016/bs.pmbts.2021.01.022]
68. Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R, Zhang F, Nureki O. Crystal structure of Cpf1 in complex with Guide RNA and target DNA. Cell 2016 2016; 165(4): 949-962. [DOI:10.1016/j.cell.2016.04.003]
69. Paul B, Montoya G. CRISPR-Cas12a: Functional overview and applications. Biomedical journal 2020; 43(1): 8-17. [DOI:10.1016/j.bj.2019.10.005]
70. Schindele P, Wolter F, Puchta H. Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS letters 2018; 592(12): 1954-1967. [DOI:10.1002/1873-3468.13073]
71. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-Guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163(3): 759-771. [DOI:10.1016/j.cell.2015.09.038]
72. Yang Z, Edwards H, Xu P. CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metabolic engineering communications 2020; 10: e00112. [DOI:10.1016/j.mec.2019.e00112]
73. Bandyopadhyay A, Kancharla N, Javalkote VS, Dasgupta S, Brutnell TP. CRISPR-Cas12a (Cpf1): a versatile tool in the plant genome editing tool box for agricultural advancement. Frontiers in plant science 2020; 11: 1589 [DOI:10.3389/fpls.2020.584151]
74. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018; 360(6387): 436-439. [DOI:10.1126/science.aar6245]
75. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017; 356(6336): 438-442. [DOI:10.1126/science.aam9321]
76. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016; 353(6299): aaf5573. [DOI:10.1126/science.aaf5573]
77. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular cell 2015; 60(3): 385-397. [DOI:10.1016/j.molcel.2015.10.008]
78. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F. RNA editing with CRISPR-Cas13. Science 2017; 358(6366): 1019-1027. [DOI:10.1126/science.aaq0180]
79. East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JHD, Tjian R, Doudna JA. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016; 538(7624): 270-273. [DOI:10.1038/nature19802]
80. Watanabe S, Cui B, Kiga K, Aiba Y, Tan XE, Sato'o Y, Kawauchi M, Boonsiri T, Thitiananpakorn K, Taki Y, Li FY, Azam AH, Nakada Y, Sasahara T, Cui L. Composition and diversity of CRISPR-Cas13a systems in the genus Leptotrichia. Frontiers in microbiology 2019; 10: 283. [DOI:10.3389/fmicb.2019.02838]
81. Li H, Bello A, Smith G, Kielich DMS, Strong JE, Pickering BS. Degenerate sequence-based CRISPR diagnostic for Crimean-Congo hemorrhagic fever virus. Forshey BM, editor. PLoS neglected tropical diseases 2022; 16(3):e0010285 [DOI:10.1371/journal.pntd.0010285]
82. Liu Y, Xu H, Liu C, Peng L, Khan H, Cui L, Huang R, Wu C, Shen S, Wang S, Liang W, Li Z, Xu B, He N. CRISPR-Cas13a nanomachine based simple technology for avian influenza A (H7N9) virus on-site detection. Journal of biomedical nanotechnology 2019; 15(4): 790-798. [DOI:10.1166/jbn.2019.2742]
83. Aquino-Jarquin G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomedicine 2019; 18: 428-431. [DOI:10.1016/j.nano.2019.03.006]
84. Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA . Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018; 362(6416): 839-342. [DOI:10.1126/science.aav4294]
85. Liu X, Hussain M, Dai J, Li Y, Zhang L, Yang J, Ali Z, He N, Tang Y. Programmable biosensors based on RNA-Guided CRISPR/Cas endonuclease. Biological procedures online 2022; 24(1): 2. [DOI:10.1186/s12575-021-00163-7]
86. Wang Q, Alariqi M, Wang F, Li B, Ding X, Rui H, Li Y, Xu Z, Qin L, Sun L, Li J, Zou J, Lindsey K, Zhang X, Jin S. The application of a heat‐inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant biotechnology journal 2020; 18(12): 2436-2443. [DOI:10.1111/pbi.13417]
87. Chen X, Tan Y, Wang S, Wu X, Liu R, Yang X, Wang Y, Tai J, Li S. A CRISPR-Cas12b-based platform for ultrasensitive, rapid, and highly specific detection of hepatitis B Virus genotypes B and C in clinical application. Frontiers in bioengineering and biotechnology 2021; 9: 844. [DOI:10.3389/fbioe.2021.743322]
88. Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F. Engineering of CRISPR-Cas12b for human genome editing. Nature communications 2019; 10(1): 212. [DOI:10.1038/s41467-018-08224-4]
89. Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, Li T, Li J, Zhou Q, Li W. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell discovery 2018; 4: 63. [DOI:10.1038/s41421-018-0069-3]
90. Kato K, Zhou W, Okazaki S, Isayama Y, Nishizawa T, Gootenberg JS, Abudayyeh OO, Nishimasu H. Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell 2022; 185(13): 2324-2337. [DOI:10.1016/j.cell.2022.05.003]
91. Goswami HN, Rai J, Das A, Li H. Molecular mechanism of active Cas7-11 in processing CRISPR RNA and interfering target RNA. Elife 2022; 11: e81678. [DOI:10.7554/eLife.81678]
92. Yu G, Wang X, Zhang Y, An Q, Wen Y, Li X, Yin H, Deng Z, Zhang H. Structure and function of a bacterial type III-E CRISPR-Cas7-11 complex. Nature microbiology 2022; 7(12): 2078-2088. [DOI:10.1038/s41564-022-01256-z]
93. Kurihara N, Nakagawa R, Hirano H, Okazaki S, Tomita A, Kobayashi K, Kusakizoko T, Nishizowoa T, Yamashito K. Structure of the type V-C CRISPR-Cas effector enzyme. Molecular cell 2022; 82(10): 1865-1877 [DOI:10.1016/j.molcel.2022.03.006]
94. Slaymaker IM, Mesa P, Kellner MJ, Kannan S, Brignole E, Koob J, Feliciano PR, Stella S, Abudayyeh OO, Gootenberg JS, Strecker J, Montoya G, Zhang F. High-resolution structure of Cas13b and biochemical characterization of RNA targeting and cleavage. Cell reports 2019; 26(13):3741-3751. [DOI:10.1016/j.celrep.2019.02.094]
95. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014 ; 156(4): 836-843. [DOI:10.1016/j.cell.2014.01.027]
96. Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS one 2017; 12(10): e0186056 [DOI:10.1371/journal.pone.0186056]
97. Naert T, Vleminckx K. CRISPR/Cas9 disease models in zebrafish and Xenopus: The genetic renaissance of fish and frogs. Drug discovery today 2018; 28: 41-52. [DOI:10.1016/j.ddtec.2018.07.001]
98. Dickinson DJ, Goldstein B. CRISPR-Based methods for caenorhabditis elegans genome engineering. Genetics 2016; 202(3): 885. [DOI:10.1534/genetics.115.182162]
99. Xue Z, Ren M, Wu M, Dai J, Rong YS, Gao G. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila. G3 (Bethesdsa) 2014; 4(5): 925-929. [DOI:10.1534/g3.114.010496]
100. Tzur YB, Friedland AE, Nadarajan S, Church GM, Calarco JA, Colaiácovo MP. Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system. Genetics 2013; 195(3): 1181-1185. [DOI:10.1534/genetics.113.156075]
101. Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DTW, Tschida B, Moriarity B, Largaespada D, Roussel MF, Korshunov A, Reifenberger G, Pfister SM, Lichter P, Kawauchi D, Gronych J. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature communication 2015; 6: 7391. [DOI:10.1038/ncomms8391]
102. Weber J, Öllinger R, Friedrich M, Ehmer U, Barenboim M, Steiger K, Heid I, Muller S, Maresch R, Engleitner T, Gross N, Geumann U, Fu B, Segler A, Yuan D, Lange S, Strong A, de la Rosa J, Esposito I, Liu P, Cadiñanos J, Vassiliou GS, Schmid RM, Schneider G, Unger K, Yang F, Braren R, Heikenwälder M, Varela I, Saur D, Bradley A, Rad R. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proceedings of the national academy of sciences of the united states of america 2015; 112(45): 13982-13987. [DOI:10.1073/pnas.1512392112]
103. Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, Brady JJ, Yang D, Grüner BM , Chuang CH, Caswell DR, Zeng H, Chu P, Kim GE, Carpizo DR, Kim SK, Winslow MM. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes and development 2015; 29(14): 1576-1585. [DOI:10.1101/gad.264861.115]
104. Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A, Ebert BL. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nature biotechnology 2014; 32(9): 941-946. [DOI:10.1038/nbt.2951]
105. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014; 514(7522): 380-384. [DOI:10.1038/nature13589]
106. Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, Joshi NS, Subbaraj L, Bronson RT, Xue W, Jacks T. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 2014; 516(7531): 428-431. [DOI:10.1038/nature13906]
107. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014; 159(2): 440-455. [DOI:10.1016/j.cell.2014.09.014]
108. Carroll KJ, Makarewich CA, McAnally J, Anderson DM, Zentilin L, Liu N, Giacca M, Bassel-Duby R, Olson EN. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proceedings of the national academy of sciences of the united states of america 2016; 113(2): 338-343. [DOI:10.1073/pnas.1523918113]
109. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016; 351(6271): 407-411. [DOI:10.1126/science.aad5177]
110. Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, Sun X, Qin Z, Jin P, Li S, Li XJ. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease. The journal of clinical investigation 2017; 127(7): 2719-2724. [DOI:10.1172/JCI92087]
111. Mizuno S, Dinh TTH, Kato K, Mizuno-Iijima S, Tanimoto Y, Daitoku Y, Hoshino Y, Ikawa M, Takahashi S, Sugiyama F, Yagami K. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system. Mammalian 2014; 25(7-8): 327-334. [DOI:10.1007/s00335-014-9524-0]
112. Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard A, Hardin A, Eckalbar WL, Vaisse C, Ahituv N. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 2019; 363(6424): eaau0629. [DOI:10.1126/science.aau0629]
113. Wang L, Yang Y, Breton CA, White J, Zhang J, Che Y, Saveliev A, McMenamin D, He Z, Latshaw C, Li M, Wilson JM. CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX-knockout mice. Blood 2019; 133(26): 2745-2752. [DOI:10.1182/blood.2019000790]
114. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nature medicine 2015; 21(3): 256-262. [DOI:10.1038/nm.3802]
115. Chang CY, Ting HC, Su HL, Jeng JR. Combining induced pluripotent stem cells and genome editing technologies for clinical applications. Cell transplantation 2018; 27(3): 379-392. [DOI:10.1177/0963689718754560]
116. Hotta A, Yamanaka S. From genomics to genetherapy: induced pluripotent stem cells meet genome editing. Annual review of genetics 2015; 49: 47-70. [DOI:10.1146/annurev-genet-112414-054926]
117. Bjursell M, Porritt MJ, Ericson E, Taheri-Ghahfarokhi A, Clausen M, Magnusson L, Admyre T, Nitsch R, Mayr L, Aasehaug L, Seeliger F, Maresca M, Bohlooly M, Wiseman J. Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates α1-antitrypsin deficiency phenotype. eBioMedicine 2018; 29: 104-111. [DOI:10.1016/j.ebiom.2018.02.015]
118. Rabaan AA, AlSaihati H, Bukhamsin R, Bakhrebah MA, Nassar MS, Alsaleh AA, Alhashem YN, Bukhamseen AY, Al-Ruhimy K, Mohammed Alotaibi, Alsubki RA, Alahmed HE, Al-Abdulhadi S , Alhashem FA, Alqatari AA, Alsayyah A, Farahat RA, Abdulal RH, Al-Ahmed AH, Imran M, Mohapatra RK. Application of CRISPR/Cas9 technology in cancer treatment: a future direction. Current oncology 2023; 30(2): 1954-1976. [DOI:10.3390/curroncol30020152]
119. Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, Cai JB, Zhang PF, Cui YH, Ke AW. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Molecular cancer 2022; 21(1): 57. [DOI:10.1186/s12943-022-01518-8]
120. Thein SL. Molecular basis of β thalassemia and potential therapeutic targets. Blood cells, molecules and diseases 2018; 70: 54-65. [DOI:10.1016/j.bcmd.2017.06.001]
121. Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: An increasing global health problem. Bull World health organization 2001; 79(8): 704-712.
122. Cavazzana M, Antoniani C, Miccio A. Gene therapy for β-hemoglobinopathies. Molecular therapy 2017; 25(5): 1142-1154. [DOI:10.1016/j.ymthe.2017.03.024]
123. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010; 467(7313): 318-322. [DOI:10.1038/nature09328]
124. Abbasalipour M, Khosravi MA, Zeinali S, Khanahmad H, Azadmanesh K, Karimipoor M. parkcontaining beta-globin gene for beta thalassemia gene therapy. Gene reports 2022; 27: 101615. [DOI:10.1016/j.genrep.2022.101615]
125. Kanter J, Walters MC, Matthew M, Krishnamurti L, Kwiatkowski J, Kamble RT, Von Kalle C, Kuypers FA, Cavazzana M, Leboulch P, Joseney-Antoine M, Asmal M, Thompson AA, Tisdale JF. Interim results from a phase 1/2 clinical study of lentiglobin gene therapy for severe sickle cell disease. Blood 2016; 28(22): 1176. [DOI:10.1182/blood.V128.22.1176.1176]
126. Thompson AA, Kwiatkowski J, Rasko J, Hongeng S, Schiller GJ, Anurathapan U, Cavazzana M, Ho J, von Kalle C, Kletzel M, Leboulch P, Vichinsky E, Petrusich A, Asmal M, Walters MC. Lentiglobin gene therapy for transfusion-dependent β-thalassemia: Update from the northstar Hgb-204 phase 1/2 clinical study. Blood 2016; 128(22): 1175. [DOI:10.1182/blood.V128.22.1175.1175]
127. Liu Y, Yang Y, Kang X, Lin B, Yu Q, Song B, GaoG 2, Chen Y, Sun X, Li X, Bu L, Fan1 Y. One-step biallelic and scarless correction of a β-Thalassemia mutation in patient-specific iPSCs without drug selection. Molecular therapy nucleic acids 2017; 6: 57-67. [DOI:10.1016/j.omtn.2016.11.010]
128. Khosravi MA, Abbasalipour M, Concordet JP, Berg J Vom, Zeinali S, Arashkia A, Azadmanesh K, Buch T, Karimipoor M. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. European journal of pharmacology 2019; 854: 398-405. [DOI:10.1016/j.ejphar.2019.04.042]
129. Khosravi MA, Abbasalipour M, Concordet JP, Berg JV, Zeinali S, Arashkia A, Buch T, Karimipoor M. Expression analysis data of BCL11A and γ-globin genes in KU812 and KG-1 cell lines after CRISPR/Cas9-mediated BCL11A enhancer deletion. Data in brief 2019; 28: 104974. [DOI:10.1016/j.dib.2019.104974]
130. Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 2016; 539(7629): 384-389. [DOI:10.1038/nature20134]
131. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015; 527(7577): 192-197. [DOI:10.1038/nature15521]
132. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW, Kim JS. Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell stem cell 2015; 17(2): 213-220. [DOI:10.1016/j.stem.2015.07.001]
133. Morishige S, Mizuno S, Ozawa H, Nakamura T, Mazahery A, Nomura K, Seki R, Mouri F, Osaki K, Yamamura K, Okamura T, Nagafuji K . CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs. International journal of hematology 2022; 111(2): 225-233. [DOI:10.1007/s12185-019-02765-0]
134. Monteys AM, Ebanks SA, Keiser MS, Davidson BL. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Molecular therapy 2017; 25(1): 12-23. [DOI:10.1016/j.ymthe.2016.11.010]
135. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EES, Beekman JM, Clevers H. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13(6): 653-658. [DOI:10.1016/j.stem.2013.11.002]
136. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014; 345(6201): 1184-1188. [DOI:10.1126/science.1254445]
137. Lattanzi A, Duguez S, Moiani A, Izmiryan A, Barbon E, Martin S, Mamchaoui K, Vincent M, Bernardi F, Mavilio F, Bovolenta M. Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system. Molecular therapy. Nucleic acids 2017; 7: 11-19. [DOI:10.1016/j.omtn.2017.02.004]
138. Min YL, Li H, Rodriguez-Caycedo C, Mireault AA, Huang J, Shelton JM, McAnally JR, Amoasii L, Mammen PPA, Bassel-Duby R, Olson EN. CRISPR-Cas9 corrects duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Science advances 2019; 5(3): eaav4324. [DOI:10.1126/sciadv.aav4324]
139. El Refaey M, Xu L, Gao Y, Canan BD, Ayodele Adesanya TM, Warner SC, et al. In vivo genome editing restores dystrophin expression and cardiac function in dystrophic mice. Circulation research 2017; 121(8): 923-929. [DOI:10.1161/CIRCRESAHA.117.310996]
140. van Agtmaal EL, André LM, Willemse M, Cumming SA, van Kessel IDG, van den Broek WJAA, Gourdon G, Furling D, Mouly V, Monckton DG, Wansink DG, Wieringa B. CRISPR/Cas9-induced (CTG⋅CAG)n repeat instability in the myotonic dystrophy type 1 locus: implications for therapeutic genome editing. Molecular therapy 2017; 25(1): 24-43. [DOI:10.1016/j.ymthe.2016.10.014]
141. Chamberlain CA, Bennett EP, Kverneland AH, Svane IM, Donia M, Met Ö. Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy. Molecular therapy oncolytics 2022; 24: 417-428. [DOI:10.1016/j.omto.2022.01.004]
142. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the national academy of sciences of the united states of america 2014; 111(31): 11461-11466. [DOI:10.1073/pnas.1405186111]
143. Liu Z, Chen S, Jin X, Wang Q, Yang K, Li C, Qiaoqiao X, Hou P, Liu S, Wu S, Hou W, Xiong Y, Kong C, Zhao X, Wu L, Li C, Sun G, Guo D. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell and bioscience 2017; 7(1): 1-15 [DOI:10.1186/s13578-017-0174-2]
144. Yu S, Yao Y, Xiao H, Li J, Liu Q, Yang Y, Adeh D, Lu J, Zhao S, Qin L, Chen X. Simultaneous knockout of CXCR4 and CCR5 genes in CD4+ T cells via CRISPR/Cas9 confers resistance to both X4- and R5-tropic human immunodeficiency virus type 1 infection. Human gene therapy 2018; 29(1): 51-67. [DOI:10.1089/hum.2017.032]
145. Mandal PK, Ferreira LMR, Collins R, Meissner TB, Boutwell CL, Friesen M, Vrbanac V, Garrison BS, Stortchevoi A, Bryder D, Musunuru K, Brand H, Tager AM, Allen TM, Talkowski ME, Rossi DJ, Cowan CA. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell stem cell 2014; 15(5):643-652. [DOI:10.1016/j.stem.2014.10.004]
146. Zhao J, Zhan Q, Guo J, Liu M, Ruan Y, Zhu T, Han L, Li F. Phylogeny and polymorphism in the E6 and E7 of human papillomavirus: Alpha-9 (HPV16, 31, 33, 52, 58), alpha-5 (HPV51), alpha-6 (HPV53, 66), alpha-7 (HPV18, 39, 59, 68) and alpha-10 (HPV6, 44) in women from Shanghai. Infectious agents and cancer 2019; 14: 38. [DOI:10.1186/s13027-019-0250-9]
147. Kennedy EM, Kornepati AVR, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, Kastan MB, Cullen BR. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. Journal of virology 2014; 88(20): 11965-11972. [DOI:10.1128/JVI.01879-14]
148. Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, Grundhoff A, Lüth S, Buchholz F, zur Wiesch JS, Hauber J. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Scientific reports 2015; 5 5: 13734. [DOI:10.1038/srep13734]
149. Sakuma T, Masaki K, Abe-Chayama H, Mochida K, Yamamoto T, Chayama K. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes to cells 2016; 21(11): 1253-1262. [DOI:10.1111/gtc.12437]
150. Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Molecular therapy nucleic acids 2014; 3: e186. [DOI:10.1038/mtna.2014.38]
151. Louradour I, Ghosh K, Inbar E, Sacks DL. CRISPR/Cas9 mutagenesis in Phlebotomus papatasi: The immune deficiency pathway impacts vector competence for Leishmania major. MBio 2019; 10(4): e01941-01919. [DOI:10.1128/mBio.01941-19]
152. Dong Y, Simões ML, Marois E, Dimopoulos G. CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS pathogenes 2018; 14(3): e1006898. [DOI:10.1371/journal.ppat.1006898]
153. Chen P, Chen M, Chen Y, Jing X, Zhang N, Zhou X, Li X, Long G, Hao P. Targeted inhibition of Zika virus infection in human cells by CRISPR-Cas13b. Virus research 2022; 312: 198707. [DOI:10.1016/j.virusres.2022.198707]
154. Park SH, Lee CM, Dever DP, Davis TH, Camarena J, Srifa W, Zhang Y, Paikari A, Chang AK, Porteus MH, Sheehan VA, Bao G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic acids research 2019; 47(15): 7955-7972. [DOI:10.1093/nar/gkz475]
155. Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Lou M, Sun X. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 System. Stem cells and development 2015; 24(9): 1053-1065. [DOI:10.1089/scd.2014.0347]
156. Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, Gao Y, Mendelsohn L, Cheng L. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem cells 2015; 33(5): 1470-1479. [DOI:10.1002/stem.1969]
157. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome research 2014; 24(9): 1526-1533. [DOI:10.1101/gr.173427.114]
158. Lai X, Liu L, Zhang Z, Shi L, Yang G, Wu M, Huang R, Liu R, Lai Y, Li Q. Hepatic veno-occlusive disease/sinusoidal obstruction syndrome after hematopoietic stem cell transplantation for thalassemia major: incidence, management, and outcome. Bone marrow transplantation 2021; 56: 1635-1641. [DOI:10.1038/s41409-021-01233-w]
159. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L, Sabo PJ, Vierstra J, Voit RA, Yuan GC, Porteus MH, Stamatoyannopoulos JA, Lettre G, Orkin SH. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 2013; 342(6155): 253-257. [DOI:10.1126/science.1242088]
160. Vierstra J, Reik A, Chang K, Stehling-Sun S, Zhou Y, Hinklley S, Paschon DE, Zhang L, Psatha N, Bendann YR, O'Neil C, Song AH, Mich AK, Liu PQ, Lee G, Bauer DE, Holmes MC, Orkin SH, Papayannoppulou T, Stamatoyannopoulos G, Rebar EJ, Gregory PD, Urnov FD, Stamatoyannopoulos JA. Functional footprinting of regulatory DNA. Nature methods 2015; 12(10): 927-930. [DOI:10.1038/nmeth.3554]
161. Sankaran V, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, Fujiwara Y, Ito M, Groudine M, Bender MA, Tucker PW, Orkin SH. Developmental and species-divergent globin switching are driven by BCL11A. Nature 2009; 460(7259): 1093-1097. [DOI:10.1038/nature08243]
162. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, Usala G, Busonero F, Maschio A, Albai G, Piras MG, Sestu N, Lai S, Dei M, Mulas A, Crisponi L, Naitza S, Asunis I, Deiana M, Nagaraja R, Perseu L, Satta S, Cipollina MD, Sollaino C, Moi P, Hirschhorn JN, Orkin SH, Abecasis GR, Schlessinger D, Cao A. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proceedings of the National Academy of Sciences of the United States of America 2008; 5(105): 1620-1625. [DOI:10.1073/pnas.0711566105]
163. Xu J, Peng C, Sankaran VG, Shao Z, Esrick EB, Chong BG, Ippolito GC, Fujiwara Y, Ebert BL, Tucker PW, Orkin SH. orrection of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 2011; 334(6058): 993-996. [DOI:10.1126/science.1211053]
164. Bjurström CF, Mojadidi M, Phillips J, Kuo C, Lai S, Lill GR, Cooper A, Kaufman M, Urbinati F, Wang X, Hollis RP, Kohn DB. Reactivating fetal hemoglobin expression in human adult erythroblasts through BCL11A knockdown using targeted endonucleases. Molecular therapy-nucleic acids 2016; 5(8): e351. [DOI:10.1038/mtna.2016.52]
165. Frangoul H, Bobruff Y, Cappellini MD, Corbacioglu S, Marie C, de la Fuente FJ, Grupp S, Handgretinger R, Ho TW, Imren S, Kattamis A, Lekstrom-Himes J, Locatelli F, Lu Y, Mapara M, Mulcahey S, de Montalembert M, Rondelli D, Shanbhag N, Sheth S, Soni S. Safety and efficacy of CTX001 in patients with transfusion-dependent b-thalassemia or sickle cell disease: Early results from the CLIMB THAL-111 and CLIMB SCD-121 studies of autologous CRISPR-CAS9-modified CD34+ hematopoietic stem and progenitor cells. 62nd Annual American Society of Hematology Meeting December 6, 2020. [DOI:10.1182/blood-2020-139575]
166. Wicki J, Seto JT, Chamberlain JS. Duchenne muscular dystrophy. In: Brenner's Encyclopedia of Genetics: Second Edition. Elsevier; 2013. P. 421-424. [DOI:10.1016/B978-0-12-374984-0.00450-2]
167. Wu SS, Li QC, Yin CQ, Xue W, Song CQ. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics 2020; 10(10): 4374-4378. [DOI:10.7150/thno.43360]
168. Choi E, Koo T. CRISPR technologies for the treatment of Duchenne muscular dystrophy. Molecular therapy 2021; 29(1): P3179-P31914. [DOI:10.1016/j.ymthe.2021.04.002]
169. Rey MM, Bonk MP, Hadjiliadis D. Cystic fibrosis: emerging understanding and therapies. Annual reviews 2019; 70:197-210. [DOI:10.1146/annurev-med-112717-094536]
170. Hanssens LS, Duchateau J, Casimir GJ. CFTR protein: not just a chloride channel? Cells 2021; 10(11): 2844. [DOI:10.3390/cells10112844]
171. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH, Verma IM. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell reports 2015; 12(9): 1385-1390. [DOI:10.1016/j.celrep.2015.07.062]
172. Ruan J, Hirai H, Yang D, Ma L, Hou X, Jiang H, Wei H, Rajagopalan C, Mou H, Wang G, Zhang J, Li K, Chen YE, Sun F, Xu J. Efficient gene editing at major CFTR mutation loci. Molecular therapy nucleic acids 2019; 16: 73-81. [DOI:10.1016/j.omtn.2019.02.006]
173. Parsons MP, Raymond LA. Huntington disease. Neurobiology of brain disorders 2015; 2015: 303-320. [DOI:10.1016/B978-0-12-398270-4.00020-3]
174. Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a huntington's disease mouse model. Molecular therapy nucleic acids 2019; 17: 829-839. [DOI:10.1016/j.omtn.2019.07.009]
175. Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T, MacDonald ME, Gusella JF, Lee JM. Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Human molecular genetics 2016; 25(20): 4566-4576. [DOI:10.1093/hmg/ddw286]
176. Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A. Scaria. CRISPR/Cas9-mediated genome editing as a therapeutic approach for leber congenital amaurosis 10. Molecular therapy 2017; 25(2): 331-341. [DOI:10.1016/j.ymthe.2016.12.006]
177. Li P, Kleinstiver BP, Leon MY, Prew MS, Navarro-Gomez D, Greenwald SH, Pierce EA, Joung JK, Liu Q. Allele-specific CRISPR-Cas9 genome editing of the single-base P23H mutation for rhodopsin-associated dominant retinitis pigmentosa. The CRISPR journal 2018; 1(1): 55-64. [DOI:10.1089/crispr.2017.0009]
178. Buskin A, Zhu L, Chichagova V, Basu B, Mozaffari-Jovin S, Dolan D, Droop A, Collin J, Bronstein R, Mehrotra S, Farkas M, Hilgen G, White K, Pan KT, Treumann A, Hallam D, Bialas K, Chung G, Mellough C, Ding Y, Krasnogor N, Przyborski S, Zwolinski S, Al-Aama J, Alharthi S, Xu Y, Wheway G, Szymanska K, McKibbin M, Inglehearn CF, Elliott DJ, Lindsay S, Ali RR, Steel DH, Armstrong L, Sernagor E, Urlaub H, Pierce E, Lührmann R, Grellscheid SN, Johnson CA, Lako M. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nature communications 2018; 9(1): 4234. [DOI:10.1038/s41467-018-06448-y]
179. Tsai YT, Wu WH, Lee TT, Wu WP, Xu CH, Park KS, Cui X, Justus S, Lin CS, Jauregui R, Su PY, Tsang SH. Clustered regularly interspaced short palindromic repeats-based genome surgery for the treatment of autosomal dominant retinitis pigmentosa. Ophthalmology 2018; 125(9): 1421-1430. [DOI:10.1016/j.ophtha.2018.04.001]
180. Liu Z, Torresilla C, Xiao Y, Nguyen PT, Caté C, Barbosa K, Rassart E, Cen S, Bouragault S, Barbeau B. HIV-1 antisense protein of different clades induces autophagy and associates with the autophagy factor p62. Journal of virology 2019; 93(2): e01757-e01757. [DOI:10.1128/JVI.01757-18]
181. Chen B. Molecular mechanism of HIV-1 entry. Trends in microbiology 2019; 27(10): 878-891. [DOI:10.1016/j.tim.2019.06.002]
182. Klasse PJ. The molecular basis of HIV entry. Cell microbiology 2012; 14(8): 1183-1192. [DOI:10.1111/j.1462-5822.2012.01812.x]
183. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature biotechnology 2013; 31(3): 230-232. [DOI:10.1038/nbt.2507]
184. Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, Zhuang K, Ho W, Hou W, Huang J, Guo D. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Scientific reports 2015; 5: 15577. [DOI:10.1038/srep15577]
185. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders JF, Meijer CJLM, International Agency of Research on Cancer Multicancer Cervical Cancer Study Group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. The new England journal of medicine 2003; 348(6): 518-527. [DOI:10.1056/NEJMoa021641]
186. Zur Hausen H. Papillomaviruses in the causation of human cancers - a brief historical account. Virology 2009; 384(2): 260-265. [DOI:10.1016/j.virol.2008.11.046]
187. Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K. Mhumans-induced oncogenesis. Journal of virology 2004; 78(21): 11451-11460. [DOI:10.1128/JVI.78.21.11451-11460.2004]
188. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Human Papillomaviruses. Lyon (FR): International Agency for Research on Cancer; 2007. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 90.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK321760/.
189. Inturi R, Jemth P. CRISPR/Cas9-based inactivation of human papillomavirus oncogenes E6 or E7 induces senescence in cervical cancer cells. Virology 2021; 562: 92-102. [DOI:10.1016/j.virol.2021.07.005]
190. Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. In vitro and block of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochemical and biophysical research communications 2014; 450(4): 1422-1426. [DOI:10.1016/j.bbrc.2014.07.014]
191. Block TM, Rawat S, Brosgart CL. Chronic hepatitis B: A wave of new therapies on the horizon. Antiviral research 2015; 121: 69-81. [DOI:10.1016/j.antiviral.2015.06.014]
192. Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene therapy 2015; 22(5): 404-412. [DOI:10.1038/gt.2015.2]
193. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao G, Tan W, China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. New journal of medicine 2020; 382(8): 727-733. [DOI:10.1056/NEJMoa2001017]
194. Feng W, Zong W, Wang F, Ju S. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review. Molecular cancer 2020; 19(1): 1001. [DOI:10.1186/s12943-020-01218-1]
195. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, Zorn K, Gopez A, Hsu E, Gu W, Miller S, Pan CY, Guevara H, Wadford DA, Chen JS, Chiu CY. CRISPR-Cas12-based detection of SARS-CoV-2. Nature biotechnology 2022; 38(7): 870-874. [DOI:10.1038/s41587-020-0513-4]
196. Ding X, Yin K, Li Z, Liu C. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) assay: a case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus. BioRxiv 2020; 21: 2020.03.19.998724. [DOI:10.1101/2020.03.19.998724]
197. Rauch JN, Valois E, Solley SC, Braig F, Lach RS, Audouard M, Ponce-Rojas JC, Costello MS, Baxter N, Kosik KS, Arias C, Acosta-Alvear D, Wilson MZ. A scalable, Eeasy-to-deploy protocol for Cas13-based detection of SARS-CoV-2 genetic material. Journal of clinical microbiology 2021; 59(4): e02402-e024020. [DOI:10.1128/JCM.02402-20]
198. Azhar M, Phutela R, Kumar M, Ansari AH, Rauthan R, Gulari S, Sharma N, Sinha D, Sharma S, Singh S, Acharya S, Sarkar S, Paul D, Kathpalia P, Aich M, Sehgal P, Singhal K, Lad H, Patra PK, Makharia G, Chandak GR, Pesala B, Chakraborty D, Maiti S. Rapid, field-deployable nucleobase detection and identification using FnCas9. Biosens Bioelectron 2021; 183:113207. [DOI:10.1016/j.bios.2021.113207]
199. Yoshimi K, Takeshita K, Yamayoshi S, Shibumura S, Yamauchi Y, Yamamoto M, Yotsuyanagi H, Kawaoka Y, Nashimo T. Rapid and accurate detection of novel coronavirus SARS-CoV-2 using CRISPR-Cas3. MedRxiv 2020; doi: 0.1016/j.isci.2022.103830. [DOI:10.1101/2020.06.02.20119875]
200. Briggs EM, Rojas F, McCulloch R, Matthews KR, Otto TD. Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing. Nature communication 2021; 12(1): 5268. [DOI:10.1038/s41467-021-25607-2]
201. Zhang WW, Karmakar S, Gannavaram S, Dey R, Lypaczewski P, Ismail N, Siddiqui A, Simonyan V, Oliveira F, Coutinho-Abreu IV, DeSouza-Vieira T, Meneses C, Oristian J, Serafim TD, Musa A, Nakamura R, Saljoughian N, Volpedo G, Satoskar M, Satoskar S, Dagur PK, McCoy JP, Kamhawi S, Valenzuela JG, Hamano S, Satoskar AR, Matlashewski G, Nakhasi HL. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature communication 2020; 11(1): 3461. [DOI:10.1038/s41467-020-17154-z]
202. Chomicz L, Conn DB, Szaflik JP, Szostakowska B. Newly emerging parasitic threats for human health: national and international trends. Biomed research international 2016; 2016: 4283270. [DOI:10.1155/2016/4283270]
203. Talapko J, Škrlec I, Alebić T, Jukić M, Včev A. Malaria: the past and the present. Microorganisms 2019; 7(6): 179. [DOI:10.3390/microorganisms7060179]
204. Ghorbal M, Gorman M, MacPherson CR, Martins RM, Scherf A, Lopez-Rubio JJ. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nature biotechnology 2014; 32(8): 819-821. [DOI:10.1038/nbt.2925]
205. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences of the United States of America 2015; 112(49): E6736-E6743. [DOI:10.1073/pnas.1521077112]
206. Xiao B, Yin S, Hu Y, Sun M, Wei J, Huang Z, Wen Y, Dai X, Chen H, Mu J, Cui L, Jiang L. Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America 2019; 116(1): 255-260. [DOI:10.1073/pnas.1813542116]
207. Zhang C, Li Z, Cui H, Jiang Y, Yang Z, Wang X, Gao H, Liu C, Zhang S, Su XZ, Yuan J. Systematic CRISPR-Cas9-mediated modifications of Plasmodium yoelii ApiAP2 genes reveal functional insights into parasite development. MBio 2017; 8(6): e01986-17. [DOI:10.1128/mBio.01986-17]
208. Sonoiki E, Ng CL, Lee MCS, Guo D, Zhang YK, Zhou Y, Alley MRK, Ahyong V, Sanz LM, Lafuente-Monasterio MJ, Dong C, Schupp PG, Gut J, Legac J, Cooper RA, Gamo FJ, DeRisi J, Freund YR, Fidock DA, Rosenthal P. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nature communication 2017; 8: 14574. [DOI:10.1038/ncomms14574]
209. Dukhovny A, Lamkiewicz K, Chen Q, Fricke M, Jabrane-Ferrat N, Marz M, Jung JU, Sklan EH. A CRISPR activation screen identifies genes that protect against zika virus infection. Journal of virology 2019; 93(16): e00211-e00219. [DOI:10.1128/JVI.00211-19]
210. Volpedo G, Pacheco-Fernandez T, Holcomb EA, Zhang WW, Lypaczewski P, Cox B, Fultz R, Mishan C, Verma C, Huston RH, Wharton AR, Dey R, Karmakar S, Oghumu S, Hamano S, Gannavaram S, Nakhasi HL, Matlashewski G, Satoskar AR. Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. NPJ vaccines 2022; 7(1): 32. [DOI:10.1038/s41541-022-00449-1]
211. Sollelis L, Ghorbal M, Macpherson CR, Martins RM, Kuk N, Crobu L, Bastien P, Scherf A, Lopez-Rubio JJ, Sterkers Y. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cellular microbiology 2015; 17(10): 1405-1412. [DOI:10.1111/cmi.12456]
212. Zhang WW, Matlashewski G. CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio 2015; 6(4): e00861. [DOI:10.1128/mBio.00861-15]
213. Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal society open science 2017; 4(5): 170095. [DOI:10.1098/rsos.170095]
214. Grewal J, Catta-Preta C, Brown E, Anand J, Mottram JC. Evaluation of clan CD C11 peptidase PNT1 and other Leishmania mexicana cysteine peptidases as potential drug targets. Biochimie 2019; 166: 150-160. [DOI:10.1016/j.biochi.2019.08.015]
215. Damasceno JD, Reis-Cunha J, Crouch K, Beraldi D, Lapsley C, Tosi LRO, Bartholomeu D, McCulloch R. Conditional knockout of RAD51-related genes in Leishmania major reveals a critical role for homologous recombination during genome replication. PLoS genetics 2020; 16(7): e1008828. [DOI:10.1371/journal.pgen.1008828]
216. Turra G, Schneider L, Liedgens L; Deponte M. Testing the CRISPR-Cas9 and glmS ribozyme systems in Leishmania tarentolae. Molecular and Biochemical parasitology 2021; 241: 111336. [DOI:10.1016/j.molbiopara.2020.111336]
217. Martel D, Beneke T, Gluenz E, Späth GF, Rachidi N. Characterisation of casein kinase 1.1 in Leishmania donovani using the CRISPR Cas9 toolkit. Biomed research international 2017; 2017: 4635605. [DOI:10.1155/2017/4635605]
218. Adaui V, Kröber-Boncardo C, Brinker C, Zirpel H, Sellau J, Arévalo J, Dujardin JC, Clos J. Application of crispr/cas9-based reverse genetics in leishmania braziliensis: Conserved roles for hsp100 and hsp23. Genes (Basel) 2020; 11(10): 1159. [DOI:10.3390/genes11101159]
219. Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio 2014; 6(1): e02097-14. [DOI:10.1128/mBio.02097-14]
220. Lander N, Li ZH, Niyogi S, Docampo R. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio 2015; 6(4): e01012. [DOI:10.1128/mBio.01012-15]
221. Dong S, Lin J, Held NL, Clem RJ, Passarelli AL, Franz AWE. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti. PLoS one 2015; 10(3): e0122353. [DOI:10.1371/journal.pone.0122353]
222. Kistler KE, Vosshall LB, Matthews BJ. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell reports 2015; 11(1): 51-60. [DOI:10.1016/j.celrep.2015.03.009]
223. Dueñas E, Nakamoto JA, Cabrera-Sosa L, Huaihua P, Cruz M, Arévalo J, Milón P, Adaui V. Novel CRISPR-based detection of Leishmania species. Frontiers in microbiology 2022; 13: 958693. [DOI:10.3389/fmicb.2022.958693]
224. Lee RA, De Puig H, Nguyen PQ, Angenent-Mari NM, Donghia NM, McGee JP, Dvorin JD, Klapperich CM, Pollock NR, Collins JJ. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proceedings of the National Academy of Sciences of the United States of America 2020; 117(41): 25722-25731. [DOI:10.1073/pnas.2010196117]
225. Kudyba HM, Cobb DW, Florentin A, Krakowiak M, Muralidharan V. CRISPR/Cas9 gene editing to make conditional mutants of human malaria parasite P. falciparum. Journal of visualized experiments; 18(139): 57747.
226. Kuang D, Qiao J, Li Z, Wang W, Xia H, Jiang L, Dai J, Fang Q, Dai X. Tagging to endogenous genes of Plasmodium falciparum using CRISPR/Cas9. Parasites and vectors 2017; 10(1): 595 [DOI:10.1186/s13071-017-2539-0]
227. Zhang X, Deitsch KW, Dzikowski R. CRISPR-Cas9 editing of the Plasmodium falciparum genome: special applications. Methods in molecular biology 2022; 2470: 241-253. [DOI:10.1007/978-1-0716-2189-9_18]
228. Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R. CRISPR/Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. Journal of biological chemistry; 291(49): 25505-25515. [DOI:10.1074/jbc.M116.749655]
229. Mehta A, Merkel OM. Immunogenicity of Cas9 protein. Journal of pharmaceutical sciences 2020; 109(1): 62-67. [DOI:10.1016/j.xphs.2019.10.003]
230. Crudele JM, Chamberlain JS. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nature communication 2018; 9(1): 3497. [DOI:10.1038/s41467-018-05843-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb