Volume 27, Issue 2 And 3 (3-2023)                   IBJ 2023, 27(2 And 3): 84-99 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baradaran M, Pashmforoosh N. Peptides with Diverse Functions from Scorpion Venom: A Great Opportunity for the Treatment of a Wide Variety of Diseases. IBJ 2023; 27 (2 and 3) :84-99
URL: http://ibj.pasteur.ac.ir/article-1-3863-en.html
The venom glands are a rich source of biologically important peptides with pharmaceutical properties. Scorpion venoms have been identified as a reservoir for the components which might be considered as great candidates for drug development. Pharmacological properties of the venom compounds have been confirmed in the treatment of different disorders. Ion channel blockers and AMPs are the main groups of scorpion venom components. Despite existence of several studies about scorpion peptides, there are still valuable components to be discovered. Additionally, owing to the improvement of proteomics and transcriptomics, the number of peptide drugs is steadily increasing, which reflects the importance of them. This review evaluates the available literatures about some important scorpion venom peptides with pharmaceutical activities. Given that the last three years have been dominated by the COVID-19 from the medical/pharmaceutical perspective, scorpion compounds with potential against the coronavirus 2 (SARS-CoV-2) are also discussed in this review.
Type of Study: Review Article | Subject: Pharmaceutical Biotechnology

1. Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nature Reviews Drug Discovery. 2021;20(4):309-25. [DOI:10.1038/s41573-020-00135-8]
2. Ma R, Mahadevappa R, Kwok HF. Venom-based peptide therapy: insights into anti-cancer mechanism. Oncotarget. 2017;8(59):100908-30. [DOI:10.18632/oncotarget.21740]
3. Lim HN, Baek SB, Jung HJ. Bee Venom and Its Peptide Component Melittin Suppress Growth and Migration of Melanoma Cells via Inhibition of PI3K/AKT/mTOR and MAPK Pathways. Molecules (Basel, Switzerland). 2019;24(5). [DOI:10.3390/molecules24050929]
4. Ejaz S, Hashmi FB, Malik WN, Ashraf M, Nasim FU, Iqbal M. Applications of Venom Proteins as Potential Anticancer Agents. Protein and peptide letters. 2018;25(7):688-701. [DOI:10.2174/0929866524666180614102104]
5. Suhas R. Structure, function and mechanistic aspects of scorpion venom peptides - A boon for the development of novel therapeutics. European Journal of Medicinal Chemistry Reports. 2022;6:100068. [DOI:10.1016/j.ejmcr.2022.100068]
6. Bosmans F, Tytgat J. Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon. 2007;49(2):142-58. [DOI:10.1016/j.toxicon.2006.09.023]
7. Gwee MC, Nirthanan S, Khoo HE, Gopalakrishnakone P, Kini RM, Cheah LS. Autonomic effects of some scorpion venoms and toxins. Clinical and Experimental Pharmacology and Physiology. 2002;29(9):795-801. [DOI:10.1046/j.1440-1681.2002.03726.x]
8. Chippaux J-P. Emerging options for the management of scorpion stings. Drug design, development and therapy. 2012;6:165. [DOI:10.2147/DDDT.S24754]
9. Cupo P. Clinical update on scorpion envenoming. Revista da Sociedade Brasileira de Medicina Tropical. 2015;48(6):642-9. [DOI:10.1590/0037-8682-0237-2015]
10. Ding J, Chua P-J, Bay B-H, Gopalakrishnakone P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental biology and medicine. 2014;239(4):387-93. [DOI:10.1177/1535370213513991]
11. Hodgson WC, Isbister GK. The application of toxins and venoms to cardiovascular drug discovery. Current opinion in pharmacology. 2009;9(2):173-6. [DOI:10.1016/j.coph.2008.11.007]
12. Varga Z, Gurrola-Briones G, Papp F, de la Vega RCR, Pedraza-Alva G, Tajhya RB, et al. Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1. 3 potassium channels of human T cells. Molecular pharmacology. 2012;82(3):372-82. [DOI:10.1124/mol.112.078006]
13. Díaz-García A, Varela D. Voltage-Gated K+/Na+ Channels and Scorpion Venom Toxins in Cancer. Frontiers in pharmacology. 2020;11:913. [DOI:10.3389/fphar.2020.00913]
14. Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides. 2014;51:35-45. [DOI:10.1016/j.peptides.2013.10.021]
15. Zeng XC, Corzo G, Hahin R. Scorpion venom peptides without disulfide bridges. IUBMB life. 2005;57(1):13-21. [DOI:10.1080/15216540500058899]
16. Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+‐channels. European journal of biochemistry. 1999;264(2):287-300. [DOI:10.1046/j.1432-1327.1999.00625.x]
17. de la Vega RCR, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon. 2005;46(8):831-44. [DOI:10.1016/j.toxicon.2005.09.006]
18. Catterall WA. Cellular and molecular biology of voltage-gated sodium channels. Physiological reviews. 1992;72(suppl_4):S15-S48. [DOI:10.1152/physrev.1992.72.suppl_4.S15]
19. de la Vega RCRg, Possani LD. Current views on scorpion toxins specific for K+-channels. Toxicon. 2004;43(8):865-75. [DOI:10.1016/j.toxicon.2004.03.022]
20. Cremonez CM, Maiti M, Peigneur S, Cassoli JS, Dutra AA, Waelkens E, et al. Structural and functional elucidation of peptide Ts11 shows evidence of a novel subfamily of scorpion venom toxins. Toxins. 2016;8(10):288. [DOI:10.3390/toxins8100288]
21. Ahmadi S, Knerr JM, Argemi L, Bordon KC, Pucca MB, Cerni FA, et al. Scorpion venom: detriments and benefits. Biomedicines. 2020;8(5):118. [DOI:10.3390/biomedicines8050118]
22. NaderiSoorki M, Galehdari H, Baradaran M, Jalali A. First venom gland transcriptomic analysis of Iranian yellow scorpion "Odonthubuthus doriae" with some new findings. Toxicon. 2016;120:69-77. [DOI:10.1016/j.toxicon.2016.07.010]
23. Norton RS, McDonough SI. Peptides targeting voltage-gated calcium channels. Current pharmaceutical design. 2008;14(24):2480-91. [DOI:10.2174/138161208785777478]
24. Chuang RSI, Jaffe H, Cribbs L, Perez-Reyes E, Swartz KJ. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nature Neuroscience. 1998;1(8):668-74. [DOI:10.1038/3669]
25. Olamendi-Portugal T, García BI, López-González I, Van Der Walt J, Dyason K, Ulens C, et al. Two new scorpion toxins that target voltage-gated Ca2+ and Na+ channels. Biochemical and biophysical research communications. 2002;299(4):562-8. [DOI:10.1016/S0006-291X(02)02706-7]
26. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harbor perspectives in biology. 2010;2(11):a003996. [DOI:10.1101/cshperspect.a003996]
27. Xiao L, Gurrola GB, Zhang J, Valdivia CR, SanMartin M, Zamudio FZ, et al. Structure-function relationships of peptides forming the calcin family of ryanodine receptor ligands. The Journal of general physiology. 2016;147(5):375-94. [DOI:10.1085/jgp.201511499]
28. Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology. 2017;127:46-78. [DOI:10.1016/j.neuropharm.2016.10.004]
29. DeBin JA, Maggio JE, Strichartz GR. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. The American journal of physiology. 1993;264(2 Pt 1):C361-9. [DOI:10.1152/ajpcell.1993.264.2.C361]
30. Olsen ML, Schade S, Lyons SA, Amaral MD, Sontheimer H. Expression of voltage-gated chloride channels in human glioma cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2003;23(13):5572-82. [DOI:10.1523/JNEUROSCI.23-13-05572.2003]
31. Ullrich N, Gillespie GY, Sontheimer H. Human astrocytoma cells express a unique chloride current. Neuroreport. 1996;7(5):1020-4. [DOI:10.1097/00001756-199604100-00013]
32. Qin C, He B, Dai W, Lin Z, Zhang H, Wang X, et al. The impact of a chlorotoxin-modified liposome system on receptor MMP-2 and the receptor-associated protein ClC-3. Biomaterials. 2014;35(22):5908-20. [DOI:10.1016/j.biomaterials.2014.03.077]
33. Fuller MD, Thompson CH, Zhang ZR, Freeman CS, Schay E, Szakács G, et al. State-dependent inhibition of cystic fibrosis transmembrane conductance regulator chloride channels by a novel peptide toxin. The Journal of biological chemistry. 2007;282(52):37545-55. [DOI:10.1074/jbc.M708079200]
34. Thompson CH, Olivetti PR, Fuller MD, Freeman CS, McMaster D, French RJ, et al. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels. The Journal of biological chemistry. 2009;284(38):26051-62. [DOI:10.1074/jbc.M109.031724]
35. Maróti G, Kereszt A, Kondorosi E, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Research in microbiology. 2011;162(4):363-74. [DOI:10.1016/j.resmic.2011.02.005]
36. Reddy KV, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. International journal of antimicrobial agents. 2004;24(6):536-47. [DOI:10.1016/j.ijantimicag.2004.09.005]
37. Hernández-Aponte CA, Silva-Sanchez J, Quintero-Hernández V, Rodríguez-Romero A, Balderas C, Possani LD, et al. Vejovine, a new antibiotic from the scorpion venom of Vaejovis mexicanus. Toxicon. 2011;57(1):84-92. [DOI:10.1016/j.toxicon.2010.10.008]
38. Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon. 2015;93:125-35. [DOI:10.1016/j.toxicon.2014.11.233]
39. Ghosh A, Roy R, Nandi M, Mukhopadhyay A. Scorpion venom-toxins that aid in drug development: a review. International journal of peptide research and therapeutics. 2019;25(1):27-37. [DOI:10.1007/s10989-018-9721-x]
40. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon. 2014;88:115-37. [DOI:10.1016/j.toxicon.2014.06.006]
41. Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. Journal of toxicology. 2013;2013. [DOI:10.1155/2013/958797]
42. Wang X, Wang G. Insights into antimicrobial peptides from spiders and scorpions. Protein and peptide letters. 2016;23(8):707-21. [DOI:10.2174/0929866523666160511151320]
43. Conde R, Zamudio FZ, Rodríguez MH, Possani LD. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS letters. 2000;471(2-3):165-8. [DOI:10.1016/S0014-5793(00)01384-3]
44. Zhu S, Tytgat J. The scorpine family of defensins: gene structure, alternative polyadenylation and fold recognition. Cellular and molecular life sciences : CMLS. 2004;61(14):1751-63. [DOI:10.1007/s00018-004-4149-1]
45. Uawonggul N, Thammasirirak S, Chaveerach A, Arkaravichien T, Bunyatratchata W, Ruangjirachuporn W, et al. Purification and characterization of Heteroscorpine-1 (HS-1) toxin from Heterometrus laoticus scorpion venom. Toxicon. 2007;49(1):19-29. [DOI:10.1016/j.toxicon.2006.09.003]
46. Abdel-Rahman MA, Quintero-Hernandez V, Possani LD. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon. 2013;74:193-207. [DOI:10.1016/j.toxicon.2013.08.064]
47. El-Bitar AM, Sarhan M, Abdel-Rahman MA, Quintero-Hernandez V, Aoki-Utsubo C, Moustafa MA, et al. Smp76, a scorpine-like peptide isolated from the venom of the scorpion Scorpio maurus palmatus, with a potent antiviral activity against hepatitis C virus and dengue virus. International Journal of Peptide Research and Therapeutics. 2020;26(2):811-21. [DOI:10.1007/s10989-019-09888-2]
48. Ji Z, Li F, Xia Z, Guo X, Gao M, Sun F, et al. The scorpion venom peptide Smp76 inhibits viral infection by regulating type-I interferon response. Virologica Sinica. 2018;33(6):545-56. [DOI:10.1007/s12250-018-0068-4]
49. Zerouti K, Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Nontoxic fraction of scorpion venom reduces bacterial growth and inflammatory response in a mouse model of infection. Toxin Reviews. 2019. [DOI:10.1080/15569543.2019.1614064]
50. Díaz P, D'Suze G, Salazar V, Sevcik C, Shannon JD, Sherman NE, et al. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes. Toxicon. 2009;54(6):802-17. [DOI:10.1016/j.toxicon.2009.06.014]
51. Dueñas-Cuellar RA, Kushmerick C, Naves LA, Batista IF, Guerrero-Vargas JA, Pires OR, Jr., et al. Cm38: a new antimicrobial peptide active against Klebsiella pneumoniae is homologous to Cn11. Protein Pept Lett. 2015;22(2):164-72. [DOI:10.2174/092986652202150128143048]
52. Santussi WM, Bordon KCF, Rodrigues Alves APN, Cologna CT, Said S, Arantes EC. Antifungal Activity against Filamentous Fungi of Ts1, a Multifunctional Toxin from Tityus serrulatus Scorpion Venom. Frontiers in microbiology. 2017;8:984-. [DOI:10.3389/fmicb.2017.00984]
53. Zoccal KF, da Silva Bitencourt C, Secatto A, Sorgi CA, Bordon KdCF, Sampaio SV, et al. Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of immune mediators. Toxicon. 2011;57(7-8):1101-8. [DOI:10.1016/j.toxicon.2011.04.017]
54. Casella-Martins A, Ayres LR, Burin SM, Morais FR, Pereira JC, Faccioli LH, et al. Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. Journal of Venomous Animals and Toxins including Tropical Diseases. 2015;21. [DOI:10.1186/s40409-015-0046-3]
55. de Oliveira Pimentel PM, de Assis DRR, Gualdrón-Lopez M, Barroso A, Brant F, Leite PG, et al. Tityus serrulatus scorpion venom as a potential drug source for Chagas' disease: Trypanocidal and immunomodulatory activity. Clinical Immunology. 2021;226:108713. [DOI:10.1016/j.clim.2021.108713]
56. De Assis DRR, Pimentel PMDO, Dos Reis PVM, Rabelo RAN, Vitor RWDA, Cordeiro MDN, et al. Tityus serrulatus (scorpion): from the crude venom to the construction of synthetic peptides and their possible therapeutic application against Toxoplasma gondii infection. Frontiers in Cellular and Infection Microbiology. 2021;11:666. [DOI:10.3389/fcimb.2021.706618]
57. Zhu S, Gao B, Aumelas A, del Carmen Rodríguez M, Lanz-Mendoza H, Peigneur S, et al. MeuTXKβ1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2010;1804(4):872-83. [DOI:10.1016/j.bbapap.2009.12.017]
58. Cheng Y, Sun F, Li S, Gao M, Wang L, Sarhan M, et al. Inhibitory Activity of a Scorpion Defensin BmKDfsin3 against Hepatitis C Virus. Antibiotics (Basel). 2020;9(1):33. [DOI:10.3390/antibiotics9010033]
59. Zeng Z, Zhang Q, Hong W, Xie Y, Liu Y, Li W, et al. A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro. Toxins. 2016;8(5):124. [DOI:10.3390/toxins8050124]
60. Meng L, Xie Z, Zhang Q, Li Y, Yang F, Chen Z, et al. Scorpion Potassium Channel-blocking Defensin Highlights a Functional Link with Neurotoxin. The Journal of biological chemistry. 2016;291(13):7097-106. [DOI:10.1074/jbc.M115.680611]
61. Baradaran M, Jalali A. A novel defensin-like peptide associated with two other new cationic antimicrobial peptides in transcriptome of the Iranian Scorpion Venom. Iranian Biomedical Journal. 2017;21(3):190. [DOI:10.18869/acadpub.ibj.21.3.190]
62. Gao B, Sherman P, Luo L, Bowie J, Zhu S. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2009;23(4):1230-45. [DOI:10.1096/fj.08-122317]
63. Gao B, Dalziel J, Tanzi S, Zhu S. Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino acids. 2018;50(8):1025-43. [DOI:10.1007/s00726-018-2580-0]
64. Gao B, Xu J, del Carmen Rodriguez M, Lanz-Mendoza H, Hernández-Rivas R, Du W, et al. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie. 2010;92(4):350-9. [DOI:10.1016/j.biochi.2010.01.011]
65. Baradaran M, Jolodar A, Jalali A, Navidpour S, Kafilzadeh F. Sequence analysis of lysozyme C from the scorpion Mesobuthus eupeus venom glands using semi-nested RT-PCR. Iranian red crescent medical journal. 2011;13(10):719.
66. Baradaran M, Jalali A, Jolodar A, Ghasemian S. New caerin-like antibacterial peptide from the venom gland of the Iranian scorpion Mesobuthus eupeus: cDNA amplification and sequence analysis. African journal of biotechnology. 2012;11(44):10176-81. [DOI:10.5897/AJB11.3373]
67. Liu G, Yang F, Li F, Li Z, Lang Y, Shen B, et al. Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant Gram-positive bacteria. Frontiers in Microbiology. 2018;9:1159. [DOI:10.3389/fmicb.2018.01159]
68. Zeng XC, Wang S, Nie Y, Zhang L, Luo X. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides. 2012;33(1):44-51. [DOI:10.1016/j.peptides.2011.11.012]
69. de Melo ET, Estrela AB, Santos ECG, Machado PRL, Farias KJS, Torres TM, et al. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin. Peptides. 2015;68:3-10. [DOI:10.1016/j.peptides.2015.03.003]
70. Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, et al. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie. 2013;95(9):1784-94. [DOI:10.1016/j.biochi.2013.06.003]
71. do Nascimento Dias J, de Souza Silva C, de Araújo AR, Souza JMT, de Holanda Veloso Junior PH, Cabral WF, et al. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Scientific reports. 2020;10(1):1-14. [DOI:10.1038/s41598-020-67041-2]
72. Guilhelmelli F, Vilela N, Smidt KS, de Oliveira MA, da Cunha Morales Álvares A, Rigonatto MCL, et al. Activity of Scorpion Venom-Derived Antifungal Peptides against Planktonic Cells of Candida spp. and Cryptococcus neoformans and Candida albicans Biofilms. Frontiers in Microbiology. 2016;7. [DOI:10.3389/fmicb.2016.01844]
73. Marques-Neto LM, Trentini MM, Das Neves RC, Resende DP, Procopio VO, Da Costa AC, et al. Antimicrobial and Chemotactic Activity of Scorpion-Derived Peptide, ToAP2, against Mycobacterium massiliensis. Toxins. 2018;10(6):219. [DOI:10.3390/toxins10060219]
74. Trentini MM, das Neves RC, Santos BdPO, DaSilva RA, Souza AC, Mortari MR, et al. Non-disulfide-bridge peptide 5.5 from the scorpion Hadrurus gertschi inhibits the growth of Mycobacterium abscessus subsp. massiliense. Frontiers in Microbiology. 2017;8:273. [DOI:10.3389/fmicb.2017.00273]
75. Corzo G, Escoubas P, Villegas E, Barnham KJ, He W, Norton RS, et al. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. The Biochemical journal. 2001;359(Pt 1):35-45. [DOI:10.1042/bj3590035]
76. Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, et al. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem. 2002;269(19):4799-810. [DOI:10.1046/j.1432-1033.2002.03177.x]
77. Zhao Z, Ma Y, Dai C, Zhao R, Li S, Wu Y, et al. Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates. Antimicrobial agents and chemotherapy. 2009;53(8):3472-7. [DOI:10.1128/AAC.01436-08]
78. Dai C, Ma Y, Zhao Z, Zhao R, Wang Q, Wu Y, et al. Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrobial agents and chemotherapy. 2008;52(11):3967-72. [DOI:10.1128/AAC.00542-08]
79. Yan R, Zhao Z, He Y, Wu L, Cai D, Hong W, et al. A new natural α-helical peptide from the venom of the scorpion Heterometrus petersii kills HCV. Peptides. 2011;32(1):11-9. [DOI:10.1016/j.peptides.2010.10.008]
80. Hong W, Li T, Song Y, Zhang R, Zeng Z, Han S, et al. Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Res. 2014;102:1-10. [DOI:10.1016/j.antiviral.2013.11.013]
81. Li Z, Xu X, Meng L, Zhang Q, Cao L, Li W, et al. Hp1404, a new antimicrobial peptide from the scorpion Heterometrus petersii. PloS one. 2014;9(5):e97539. [DOI:10.1371/journal.pone.0097539]
82. Zeng XC, Wang SX, Zhu Y, Zhu SY, Li WX. Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides. 2004;25(2):143-50. [DOI:10.1016/j.peptides.2003.12.003]
83. Chen Y, Cao L, Zhong M, Zhang Y, Han C, Li Q, et al. Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PloS one. 2012;7(4):e34947. [DOI:10.1371/journal.pone.0034947]
84. Almaaytah A, Zhou M, Wang L, Chen T, Walker B, Shaw C. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides. 2012;35(2):291-9. [DOI:10.1016/j.peptides.2012.03.016]
85. Dai L, Yasuda A, Naoki H, Corzo G, Andriantsiferana M, Nakajima T. IsCT, a novel cytotoxic linear peptide from scorpion Opisthacanthus madagascariensis. Biochemical and biophysical research communications. 2001;286(4):820-5. [DOI:10.1006/bbrc.2001.5472]
86. Dai L, Corzo G, Naoki H, Andriantsiferana M, Nakajima T. Purification, structure-function analysis, and molecular characterization of novel linear peptides from scorpion Opisthacanthus madagascariensis. Biochemical and biophysical research communications. 2002;293(5):1514-22. [DOI:10.1016/S0006-291X(02)00423-0]
87. Remijsen Q, Verdonck F, Willems J. Parabutoporin, a cationic amphipathic peptide from scorpion venom: much more than an antibiotic. Toxicon. 2010;55(2-3):180-5. [DOI:10.1016/j.toxicon.2009.10.027]
88. Luo X, Ye X, Ding L, Zhu W, Zhao Z, Luo D, et al. Identification of the scorpion venom-derived antimicrobial peptide Hp1404 as a new antimicrobial agent against carbapenem-resistant Acinetobacter baumannii. Microbial Pathogenesis. 2021;157:104960. [DOI:10.1016/j.micpath.2021.104960]
89. Hong MJ, Kim MK, Park Y. Comparative antimicrobial activity of Hp404 peptide and its analogs against Acinetobacter baumannii. International journal of molecular sciences. 2021;22(11):5540. [DOI:10.3390/ijms22115540]
90. Kim MK, Kang HK, Ko SJ, Hong MJ, Bang JK, Seo CH, et al. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Scientific reports. 2018;8(1):1-16. [DOI:10.1038/s41598-018-19434-7]
91. Tong-ngam P, Roytrakul S, Sritanaudomchai H. BmKn-2 scorpion venom peptide for killing oral cancer cells by apoptosis. Asian pacific journal of cancer prevention. 2015;16(7):2807-11. [DOI:10.7314/APJCP.2015.16.7.2807]
92. Almaaytah A, Tarazi S, Abu-Alhaijaa A, Altall Y, Alshar'i N, Bodoor K, et al. Enhanced antimicrobial activity of AamAP1-Lysine, a novel synthetic peptide analog derived from the scorpion venom peptide AamAP1. Pharmaceuticals. 2014;7(5):502-16. [DOI:10.3390/ph7050502]
93. Almaaytah A, Abualhaijaa A, Alqudah O. The evaluation of the synergistic antimicrobial and antibiofilm activity of AamAP1-Lysine with conventional antibiotics against representative resistant strains of both Gram-positive and Gram-negative bacteria. Infection and Drug Resistance. 2019;12:1371. [DOI:10.2147/IDR.S204626]
94. Almaaytah A, Farajallah A, Abualhaijaa A, Al-Balas Q. A3, a scorpion venom derived peptide analogue with potent antimicrobial and potential antibiofilm activity against clinical isolates of multi-drug resistant gram positive bacteria. Molecules. 2018;23(7):1603. [DOI:10.3390/molecules23071603]
95. de Jesus Oliveira T, Oliveira UC, da Silva Junior PI. Serrulin: A Glycine-Rich Bioactive Peptide from the Hemolymph of the Yellow Tityus serrulatus Scorpion. Toxins (Basel). 2019;11(9). [DOI:10.3390/toxins11090517]
96. Hong W, Zhang R, Di Z, He Y, Zhao Z, Hu J, et al. Design of histidine-rich peptides with enhanced bioavailability and inhibitory activity against hepatitis C virus. Biomaterials. 2013;34(13):3511-22. [DOI:10.1016/j.biomaterials.2013.01.075]
97. Zeng Z, Zhang R, Hong W, Cheng Y, Wang H, Lang Y, et al. Histidine-rich Modification of a Scorpion-derived Peptide Improves Bioavailability and Inhibitory Activity against HSV-1. Theranostics. 2018;8(1):199-211. [DOI:10.7150/thno.21425]
98. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016.
99. Hassan M, Kjos M, Nes I, Diep D, Lotfipour F. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. Journal of applied microbiology. 2012;113(4):723-36. [DOI:10.1111/j.1365-2672.2012.05338.x]
100. Chew MF, Poh KS, Poh CL. Peptides as Therapeutic Agents for Dengue Virus. International journal of medical sciences. 2017;14(13):1342-59. [DOI:10.7150/ijms.21875]
101. Mahendran ASK, Lim YS, Fang CM, Loh HS, Le CF. The Potential of Antiviral Peptides as COVID-19 Therapeutics. Frontiers in pharmacology. 2020;11:575444. [DOI:10.3389/fphar.2020.575444]
102. Mahnam K, Lotfi M, Shapoorabadi FA. Examining the interactions scorpion venom peptides (HP1090, Meucin-13, and Meucin-18) with the receptor binding domain of the coronavirus spike protein to design a mutated therapeutic peptide. Journal of Molecular Graphics and Modelling. 2021;107:107952. [DOI:10.1016/j.jmgm.2021.107952]
103. Li Q, Zhao Z, Zhou D, Chen Y, Hong W, Cao L, et al. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides. 2011;32(7):1518-25. [DOI:10.1016/j.peptides.2011.05.015]
104. Koganti R, Yadavalli T, Shukla D. Current and Emerging Therapies for Ocular Herpes Simplex Virus Type-1 Infections. Microorganisms. 2019;7(10). [DOI:10.3390/microorganisms7100429]
105. Kim SH. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt. Viruses. 2018;10(3). [DOI:10.3390/v10030121]
106. Agarwal G, Gabrani R. Antiviral Peptides: Identification and Validation. International journal of peptide research and therapeutics. 2021;27(1):149-68. [DOI:10.1007/s10989-020-10072-0]
107. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer observatory: cancer today. International Agency for Research on Cancer, Lyon. 2020.
108. Mishal R, Tahir HM, Zafar K, Arshad M. Anti-cancerous applications of scorpion venom. Int J Biol Pharm Res. 2013;4(5):356-60.
109. Srairi-Abid N, Othman H, Aissaoui D, BenAissa R. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell calcium. 2019;80:160-74. [DOI:10.1016/j.ceca.2019.05.003]
110. Litan A, Langhans SA. Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Frontiers in cellular neuroscience. 2015;9:86. [DOI:10.3389/fncel.2015.00086]
111. Prevarskaya N, Skryma R, Shuba Y. Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiological reviews. 2018;98(2):559-621. [DOI:10.1152/physrev.00044.2016]
112. Heinen TE, da Veiga ABG. Arthropod venoms and cancer. Toxicon. 2011;57(4):497-511. [DOI:10.1016/j.toxicon.2011.01.002]
113. Satitmanwiwat S, Changsangfa C, Khanuengthong A, Promthep K, Roytrakul S, Arpornsuwan T, et al. The scorpion venom peptide BmKn2 induces apoptosis in cancerous but not in normal human oral cells. Biomedicine & Pharmacotherapy. 2016;84:1042-50. [DOI:10.1016/j.biopha.2016.10.041]
114. Kampo S, Ahmmed B, Zhou T, Owusu L, Anabah TW, Doudou NR, et al. Scorpion Venom Analgesic Peptide, BmK AGAP Inhibits Stemness, and Epithelial-Mesenchymal Transition by Down-Regulating PTX3 in Breast Cancer. Frontiers in oncology. 2019;9:21. [DOI:10.3389/fonc.2019.00021]
115. Gupta SD, Gomes A, Debnath A, Saha A, Gomes A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chemico-biological interactions. 2010;183(2):293-303. [DOI:10.1016/j.cbi.2009.11.006]
116. Daniele-Silva A, Machado RJ, Monteiro NK, Estrela AB, Santos EC, Carvalho E, et al. Stigmurin and TsAP-2 from Tityus stigmurus scorpion venom: assessment of structure and therapeutic potential in experimental sepsis. Toxicon. 2016;121:10-21. [DOI:10.1016/j.toxicon.2016.08.016]
117. D'Suze G, Rosales A, Salazar V, Sevcik C. Apoptogenic peptides from Tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon. 2010;56(8):1497-505. [DOI:10.1016/j.toxicon.2010.09.008]
118. Jang SH, Choi SY, Ryu PD, Lee SY. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. European journal of pharmacology. 2011;651(1-3):26-32. [DOI:10.1016/j.ejphar.2010.10.066]
119. Almaaytah A, Tarazi S, Mhaidat N, Al-Balas Q, Mukattash TL. Mauriporin, a novel cationic α-helical peptide with selective cytotoxic activity against prostate cancer cell lines from the venom of the scorpion Androctonus mauritanicus. International journal of peptide research and therapeutics. 2013;19(4):281-93. [DOI:10.1007/s10989-013-9350-3]
120. Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. The Journal of biological chemistry. 2003;278(6):4135-44. [DOI:10.1074/jbc.M205662200]
121. Dardevet L, Rani D, Aziz TAE, Bazin I, Sabatier J-M, Fadl M, et al. Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins. 2015;7(4):1079-101. [DOI:10.3390/toxins7041079]
122. Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, et al. Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer research. 2007;67(14):6882-8. [DOI:10.1158/0008-5472.CAN-06-3948]
123. Qin C, He B, Dai W, Zhang H, Wang X, Wang J, et al. Inhibition of Metastatic Tumor Growth and Metastasis via Targeting Metastatic Breast Cancer by Chlorotoxin-Modified Liposomes. Molecular Pharmaceutics. 2014;11(10):3233-41. [DOI:10.1021/mp400691z]
124. McGonigle S, Majumder U, Kolber-Simonds D, Wu J, Hart A, Noland T, et al. Neuropilin-1 drives tumor-specific uptake of chlorotoxin. Cell communication and signaling : CCS. 2019;17(1):67. [DOI:10.1186/s12964-019-0368-9]
125. Baradaran M, Jalali A, Soorki MN, Jokar M, Galehdari H. Three new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations. Iranian journal of pharmaceutical research: IJPR. 2019;18(2):720.
126. Wang W-X, Ji Y-H. Scorpion venom induces glioma cell apoptosis in vivo and inhibits glioma tumor growth in vitro. Journal of neuro-oncology. 2005;73(1):1-7. [DOI:10.1007/s11060-004-4205-6]
127. Díaz-García A, Ruiz-Fuentes JL, Rodríguez-Sánchez H, Castro JAF. Rhopalurus junceus scorpion venom induces apoptosis in the triple negative human breast cancer cell line MDA-MB-231. Journal of venom research. 2017;8:9.
128. Das Gupta S, Debnath A, Saha A, Giri B, Tripathi G, Vedasiromoni JR, et al. Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leukemia research. 2007;31(6):817-25. [DOI:10.1016/j.leukres.2006.06.004]
129. Das Gupta S, Halder B, Gomes A, Gomes A. Bengalin initiates autophagic cell death through ERK-MAPK pathway following suppression of apoptosis in human leukemic U937 cells. Life sciences. 2013;93(7):271-6. [DOI:10.1016/j.lfs.2013.06.022]
130. Bernardes-Oliveira E, Farias KJS, Gomes DL, Araújo JMGd, Silva WDd, Rocha HAO, et al. Tityus serrulatus scorpion venom induces apoptosis in cervical cancer cell lines. Evidence-Based Complementary and Alternative Medicine. 2019;2019. [DOI:10.1155/2019/5131042]
131. Zargan J, Umar S, Sajad M, Naime M, Ali S, Khan HA. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicology in Vitro. 2011;25(8):1748-56. [DOI:10.1016/j.tiv.2011.09.002]
132. Zargan J, Sajad M, Umar S, Naime M, Ali S, Khan HA. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Molecular and cellular biochemistry. 2011;348(1):173-81. [DOI:10.1007/s11010-010-0652-x]
133. Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. British journal of pharmacology. 2018;175(12):2138-57. [DOI:10.1111/bph.13962]
134. Wood JN, Boorman JP, Okuse K, Baker MD. Voltage-gated sodium channels and pain pathways. Journal of neurobiology. 2004;61(1):55-71. [DOI:10.1002/neu.20094]
135. Li Z, Hu P, Wu W, Wang Y. Peptides with therapeutic potential in the venom of the scorpion Buthus martensii Karsch. Peptides. 2019;115:43-50. [DOI:10.1016/j.peptides.2019.02.009]
136. Liu ZR, Tao J, Dong BQ, Ding G, Cheng ZJ, He HQ, et al. Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3. Neuroscience bulletin. 2012;28(3):209-21. [DOI:10.1007/s12264-012-1234-6]
137. Zhang Y, Xu J, Wang Z, Zhang X, Liang X, Civelli O. Bm K-YA, an Enkephalin-Like Peptide in Scorpion Venom. PloS one. 2012;7(7):e40417. [DOI:10.1371/journal.pone.0040417]
138. Cao ZY, Mi ZM, Cheng GF, Shen WQ, Xiao X, Liu XM, et al. Purification and characterization of a new peptide with analgesic effect from the scorpion Buthus martensi Karch. The journal of peptide research : official journal of the American Peptide Society. 2004;64(1):33-41. [DOI:10.1111/j.1399-3011.2004.00164.x]
139. Ruan JP, Mao QH, Lu WG, Cai XT, Chen J, Li Q, et al. Inhibition of spinal MAPKs by scorpion venom peptide BmK AGAP produces a sensory-specific analgesic effect. Molecular pain. 2018;14:1744806918761238. [DOI:10.1177/1744806918761238]
140. Zhao F, Wang JL, Ming HY, Zhang YN, Dun YQ, Zhang JH, et al. Insights into the binding mode and functional components of the analgesic-antitumour peptide from Buthus martensii Karsch to human voltage-gated sodium channel 1.7 based on dynamic simulation analysis. Journal of biomolecular structure & dynamics. 2020;38(6):1868-79. [DOI:10.1080/07391102.2019.1620126]
141. Song Y, Liu Z, Zhang Q, Li C, Jin W, Liu L, et al. Investigation of binding modes and functional surface of scorpion toxins ANEP to sodium channels 1.7. Toxins. 2017;9(12):387. [DOI:10.3390/toxins9120387]
142. Wang Y, Wang L, Cui Y, Song YB, Liu YF, Zhang R, et al. Purification, characterization and functional expression of a new peptide with an analgesic effect from Chinese scorpion Buthus martensii Karsch (BmK AGP‐SYPU1). Biomedical Chromatography. 2011;25(7):801-7. [DOI:10.1002/bmc.1519]
143. Zhang R, Yang Z, Liu YF, Cui Y, Zhang JH. Purification, characterization and cDNA cloning of an analgesic peptide from the Chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU2). Molekuliarnaia biologiia. 2011;45(6):956-62. [DOI:10.1134/S0026893311060203]
144. Wang Y, Song YB, Yang GZ, Cui Y, Zhao YS, Liu YF, et al. Arginine residues in the C-terminal and their relationship with the analgesic activity of the toxin from the Chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU1). Applied biochemistry and biotechnology. 2012;168(2):247-55. [DOI:10.1007/s12010-012-9768-7]
145. Zhang R, Cui Y, Zhang X, Yang Z, Zhao Y, Song Y, et al. Soluble expression, purification and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2. BMB reports. 2010;43(12):801-6. [DOI:10.5483/BMBRep.2010.43.12.801]
146. Yang F, Liu S, Zhang Y, Qin C, Xu L, Li W, et al. Expression of recombinant α-toxin BmKM9 from scorpion Buthus martensii Karsch and its functional characterization on sodium channels. Peptides. 2018;99:153-60. [DOI:10.1016/j.peptides.2017.09.017]
147. Wang Y, Hao Z, Shao J, Song Y, Li C, Li C, et al. The role of Ser54 in the antinociceptive activity of BmK9, a neurotoxin from the scorpion Buthus martensii Karsch. Toxicon. 2011;58(6-7):527-32. [DOI:10.1016/j.toxicon.2011.08.014]
148. Alami M, Vacher H, Bosmans F, Devaux C, Rosso J-P, Bougis PE, et al. Characterization of Amm VIII from Androctonus mauretanicus mauretanicus: a new scorpion toxin that discriminates between neuronal and skeletal sodium channels. Biochemical Journal. 2003;375(3):551-60. [DOI:10.1042/bj20030688]
149. Rigo FK, Bochi GV, Pereira AL, Adamante G, Ferro PR, Dal-Toé De Prá S, et al. TsNTxP, a non-toxic protein from Tityus serrulatus scorpion venom, induces antinociceptive effects by suppressing glutamate release in mice. European journal of pharmacology. 2019;855:65-74. [DOI:10.1016/j.ejphar.2019.05.002]
150. Hoang AN, Vo HD, Vo NP, Kudryashova KS, Nekrasova OV, Feofanov AV, et al. Vietnamese Heterometrus laoticus scorpion venom: evidence for analgesic and anti-inflammatory activity and isolation of new polypeptide toxin acting on Kv1.3 potassium channel. Toxicon. 2014;77:40-8. [DOI:10.1016/j.toxicon.2013.10.027]
151. Bagheri-Ziari S, Shahbazzadeh D, Sardari S, Sabatier J-M, Pooshang Bagheri K. Discovery of a New Analgesic Peptide, Leptucin, from the Iranian Scorpion, Hemiscorpius lepturus. Molecules. 2021;26(9):2580. [DOI:10.3390/molecules26092580]
152. Zhang R, Yang Z, Liu Y, Cui Y, Zhang J. Purification, characterization and cDNA cloning of an analgesic peptide from the chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU2). Molecular Biology. 2011;45(6):879-85. [DOI:10.1134/S0026893311060203]
153. Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A. The kinin system-bradykinin: biological effects and clinical implications. Multiple role of the kinin system-bradykinin. Hippokratia. 2007;11(3):124.
154. Rocha ESM, Beraldo WT, Rosenfeld G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. The American journal of physiology. 1949;156(2):261-73. [DOI:10.1152/ajplegacy.1949.156.2.261]
155. Ferreira S. A bradykinin‐potentiating factor (BPF) present in the venom of Bothrops jararaca. British journal of pharmacology and chemotherapy. 1965;24(1):163-9. [DOI:10.1111/j.1476-5381.1965.tb02091.x]
156. Camargo AC, Ianzer D, Guerreiro JR, Serrano SM. Bradykinin-potentiating peptides: beyond captopril. Toxicon. 2012;59(4):516-23. [DOI:10.1016/j.toxicon.2011.07.013]
157. Ferreira L, Alves E, Henriques O. Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom. Toxicon. 1993;31(8):941-7. [DOI:10.1016/0041-0101(93)90253-F]
158. Meki AR, Nassar AY, Rochat H. A bradykinin-potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus. Peptides. 1995;16(8):1359-65. [DOI:10.1016/0196-9781(95)02036-5]
159. Machado RJ, Junior LG, Monteiro NK, Silva-Júnior AA, Portaro FC, Barbosa EG, et al. Homology modeling, vasorelaxant and bradykinin-potentiating activities of a novel hypotensin found in the scorpion venom from Tityus stigmurus. Toxicon. 2015;101:11-8. [DOI:10.1016/j.toxicon.2015.04.003]
160. Verano-Braga T, Figueiredo-Rezende F, Melo MN, Lautner RQ, Gomes ER, Mata-Machado LT, et al. Structure-function studies of Tityus serrulatus Hypotensin-I (TsHpt-I): A new agonist of B(2) kinin receptor. Toxicon. 2010;56(7):1162-71. [DOI:10.1016/j.toxicon.2010.04.006]
161. Anangi R, Koshy S, Huq R, Beeton C, Chuang WJ, King GF. Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers. PloS one. 2012;7(12):e52965. [DOI:10.1371/journal.pone.0052965]
162. Mouhat S, Visan V, Ananthakrishnan S, Wulff H, Andreotti N, Grissmer S, et al. K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochemical Journal. 2005;385(1):95-104. [DOI:10.1042/BJ20041379]
163. Romi-Lebrun R, Lebrun B, Martin-Eauclaire M-F, Ishiguro M, Escoubas P, Wu FQ, et al. Purification, characterization, and synthesis of three novel toxins from the Chinese scorpion Buthus martensi, which act on K+ channels. Biochemistry. 1997;36(44):13473-82. [DOI:10.1021/bi971044w]
164. Han S, Yi H, Yin SJ, Chen ZY, Liu H, Cao ZJ, et al. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. The Journal of biological chemistry. 2008;283(27):19058-65. [DOI:10.1074/jbc.M802054200]
165. Tanner MR, Tajhya RB, Huq R, Gehrmann EJ, Rodarte KE, Atik MA, et al. Prolonged immunomodulation in inflammatory arthritis using the selective Kv1.3 channel blocker HsTX1[R14A] and its PEGylated analog. Clinical immunology (Orlando, Fla). 2017;180:45-57. [DOI:10.1016/j.clim.2017.03.014]
166. Pucca MB, Bertolini TB, Cerni FA, Bordon KC, Peigneur S, Tytgat J, et al. Immunosuppressive evidence of Tityus serrulatus toxins Ts6 and Ts15: insights of a novel K(+) channel pattern in T cells. Immunology. 2016;147(2):240-50. [DOI:10.1111/imm.12559]
167. Xiao M, Ding L, Yang W, Chai L, Sun Y, Yang X, et al. St20, a new venomous animal derived natural peptide with immunosuppressive and anti-inflammatory activities. Toxicon. 2017;127:37-43. [DOI:10.1016/j.toxicon.2017.01.005]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb